Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1216–1225. doi: 10.1016/S0006-3495(02)75478-7

Temperature dependence of protein dynamics: computer simulation analysis of neutron scattering properties.

Jennifer A Hayward 1, Jeremy C Smith 1
PMCID: PMC1301925  PMID: 11867439

Abstract

The temperature dependence of the internal dynamics of an isolated protein, bovine pancreatic trypsin inhibitor, is examined using normal mode analysis and molecular dynamics (MD) simulation. It is found that the protein exhibits marked anharmonic dynamics at temperatures of approximately 100-120 K, as evidenced by departure of the MD-derived average mean square displacement from that of the harmonic model. This activation of anharmonic dynamics is at lower temperatures than previously detected in proteins and is found in the absence of solvent molecules. The simulation data are also used to investigate neutron scattering properties. The effects are determined of instrumental energy resolution and of approximations commonly used to extract mean square displacement data from elastic scattering experiments. Both the presence of a distribution of mean square displacements in the protein and the use of the Gaussian approximation to the dynamic structure factor lead to quantified underestimation of the mean square displacement obtained.

Full Text

The Full Text of this article is available as a PDF (173.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell C. A. Formation of glasses from liquids and biopolymers. Science. 1995 Mar 31;267(5206):1924–1935. doi: 10.1126/science.267.5206.1924. [DOI] [PubMed] [Google Scholar]
  2. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
  5. Daniel R. M., Finney J. L., Réat V., Dunn R., Ferrand M., Smith J. C. Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution. Biophys J. 1999 Oct;77(4):2184–2190. doi: 10.1016/S0006-3495(99)77058-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel R. M., Smith J. C., Ferrand M., Héry S., Dunn R., Finney J. L. Enzyme activity below the dynamical transition at 220 K. Biophys J. 1998 Nov;75(5):2504–2507. doi: 10.1016/S0006-3495(98)77694-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demmel F., Doster W., Petry W., Schulte A. Vibrational frequency shifts as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J. 1997;26(4):327–335. doi: 10.1007/s002490050087. [DOI] [PubMed] [Google Scholar]
  8. Ding X., Rasmussen B. F., Petsko G. A., Ringe D. Direct structural observation of an acyl-enzyme intermediate in the hydrolysis of an ester substrate by elastase. Biochemistry. 1994 Aug 9;33(31):9285–9293. [PubMed] [Google Scholar]
  9. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  10. Dunn R. V., Réat V., Finney J., Ferrand M., Smith J. C., Daniel R. M. Enzyme activity and dynamics: xylanase activity in the absence of fast anharmonic dynamics. Biochem J. 2000 Mar 1;346(Pt 2):355–358. [PMC free article] [PubMed] [Google Scholar]
  11. Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
  12. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fitter J., Ernst O. P., Hauss T., Lechner R. E., Hofmann K. P., Dencher N. A. Molecular motions and hydration of purple membranes and disk membranes studied by neutron scattering. Eur Biophys J. 1998;27(6):638–645. doi: 10.1007/s002490050175. [DOI] [PubMed] [Google Scholar]
  14. Fitter J., Lechner R. E., Dencher N. A. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J. 1997 Oct;73(4):2126–2137. doi: 10.1016/S0006-3495(97)78243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitter J. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J. 1999 Feb;76(2):1034–1042. doi: 10.1016/S0006-3495(99)77268-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fitter J., Verclas S. A., Lechner R. E., Seelert H., Dencher N. A. Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration. FEBS Lett. 1998 Aug 21;433(3):321–325. doi: 10.1016/s0014-5793(98)00938-7. [DOI] [PubMed] [Google Scholar]
  17. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  18. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  19. Kneller G. R., Smith J. C. Liquid-like side-chain dynamics in myoglobin. J Mol Biol. 1994 Sep 23;242(3):181–185. doi: 10.1006/jmbi.1994.1570. [DOI] [PubMed] [Google Scholar]
  20. Lehnert U., Réat V., Weik M., Zaccaï G., Pfister C. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys J. 1998 Oct;75(4):1945–1952. doi: 10.1016/S0006-3495(98)77635-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ostermann A., Waschipky R., Parak F. G., Nienhaus G. U. Ligand binding and conformational motions in myoglobin. Nature. 2000 Mar 9;404(6774):205–208. doi: 10.1038/35004622. [DOI] [PubMed] [Google Scholar]
  22. Parak F., Frolov E. N., Kononenko A. A., Mössbauer R. L., Goldanskii V. I., Rubin A. B. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. 1980 Aug 11;117(1):368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
  23. Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parkin S., Rupp B., Hope H. Structure of bovine pancreatic trypsin inhibitor at 125 K definition of carboxyl-terminal residues Gly57 and Ala58. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):18–29. doi: 10.1107/S0907444995008675. [DOI] [PubMed] [Google Scholar]
  25. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  26. Réat V., Dunn R., Ferrand M., Finney J. L., Daniel R. M., Smith J. C. Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9961–9966. doi: 10.1073/pnas.97.18.9961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith J., Kuczera K., Karplus M. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1601–1605. doi: 10.1073/pnas.87.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vitkup D., Ringe D., Petsko G. A., Karplus M. Solvent mobility and the protein 'glass' transition. Nat Struct Biol. 2000 Jan;7(1):34–38. doi: 10.1038/71231. [DOI] [PubMed] [Google Scholar]
  29. Zaccai G. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Biophys Chem. 2000 Aug 30;86(2-3):249–257. doi: 10.1016/s0301-4622(00)00172-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES