Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1319–1328. doi: 10.1016/S0006-3495(02)75487-8

Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.

Thomas Nabhani 1, Xinsheng Zhu 1, Ilenia Simeoni 1, Vincenzo Sorrentino 1, Héctor H Valdivia 1, Jesús García 1
PMCID: PMC1301934  PMID: 11867448

Abstract

Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor.

Full Text

The Full Text of this article is available as a PDF (301.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. A., Tanabe T., Mikami A., Numa S., Beam K. G. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature. 1990 Aug 9;346(6284):569–572. doi: 10.1038/346569a0. [DOI] [PubMed] [Google Scholar]
  2. Bertocchini F., Ovitt C. E., Conti A., Barone V., Schöler H. R., Bottinelli R., Reggiani C., Sorrentino V. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 1997 Dec 1;16(23):6956–6963. doi: 10.1093/emboj/16.23.6956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conklin M. W., Ahern C. A., Vallejo P., Sorrentino V., Takeshima H., Coronado R. Comparison of Ca(2+) sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). Biophys J. 2000 Apr;78(4):1777–1785. doi: 10.1016/S0006-3495(00)76728-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conklin M. W., Barone V., Sorrentino V., Coronado R. Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle. Biophys J. 1999 Sep;77(3):1394–1403. doi: 10.1016/S0006-3495(99)76988-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conti A., Gorza L., Sorrentino V. Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J. 1996 May 15;316(Pt 1):19–23. doi: 10.1042/bj3160019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietze B., Bertocchini F., Barone V., Struk A., Sorrentino V., Melzer W. Voltage-controlled Ca2+ release in normal and ryanodine receptor type 3 (RyR3)-deficient mouse myotubes. J Physiol. 1998 Nov 15;513(Pt 1):3–9. doi: 10.1111/j.1469-7793.1998.003by.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. El-Hayek R., Ikemoto N. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry. 1998 May 12;37(19):7015–7020. doi: 10.1021/bi972907o. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Flucher B. E., Conti A., Takeshima H., Sorrentino V. Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers. J Cell Biol. 1999 Aug 9;146(3):621–630. doi: 10.1083/jcb.146.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García J., Beam K. G. Measurement of calcium transients and slow calcium current in myotubes. J Gen Physiol. 1994 Jan;103(1):107–123. doi: 10.1085/jgp.103.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giannini G., Clementi E., Ceci R., Marziali G., Sorrentino V. Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science. 1992 Jul 3;257(5066):91–94. doi: 10.1126/science.1320290. [DOI] [PubMed] [Google Scholar]
  12. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. González A., Kirsch W. G., Shirokova N., Pizarro G., Brum G., Pessah I. N., Stern M. D., Cheng H., Ríos E. Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4380–4385. doi: 10.1073/pnas.070056497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gurrola G. B., Arévalo C., Sreekumar R., Lokuta A. J., Walker J. W., Valdivia H. H. Activation of ryanodine receptors by imperatoxin A and a peptide segment of the II-III loop of the dihydropyridine receptor. J Biol Chem. 1999 Mar 19;274(12):7879–7886. doi: 10.1074/jbc.274.12.7879. [DOI] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Leong P., MacLennan D. H. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem. 1998 Apr 3;273(14):7791–7794. doi: 10.1074/jbc.273.14.7791. [DOI] [PubMed] [Google Scholar]
  17. Lokuta A. J., Meyers M. B., Sander P. R., Fishman G. I., Valdivia H. H. Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem. 1997 Oct 3;272(40):25333–25338. doi: 10.1074/jbc.272.40.25333. [DOI] [PubMed] [Google Scholar]
  18. Marx S. O., Ondrias K., Marks A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science. 1998 Aug 7;281(5378):818–821. doi: 10.1126/science.281.5378.818. [DOI] [PubMed] [Google Scholar]
  19. Mironneau J., Coussin F., Jeyakumar L. H., Fleischer S., Mironneau C., Macrez N. Contribution of ryanodine receptor subtype 3 to ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes. J Biol Chem. 2001 Jan 9;276(14):11257–11264. doi: 10.1074/jbc.M005994200. [DOI] [PubMed] [Google Scholar]
  20. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  21. Nakai J., Tanabe T., Konno T., Adams B., Beam K. G. Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation-contraction coupling. J Biol Chem. 1998 Sep 25;273(39):24983–24986. doi: 10.1074/jbc.273.39.24983. [DOI] [PubMed] [Google Scholar]
  22. Oyamada H., Murayama T., Takagi T., Iino M., Iwabe N., Miyata T., Ogawa Y., Endo M. Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J Biol Chem. 1994 Jun 24;269(25):17206–17214. [PubMed] [Google Scholar]
  23. Pan Z., Damron D., Nieminen A. L., Bhat M. B., Ma J. Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of chinese hamster ovary cells transfected with ryanodine receptor. J Biol Chem. 2000 Jun 30;275(26):19978–19984. doi: 10.1074/jbc.M908329199. [DOI] [PubMed] [Google Scholar]
  24. Proenza C., Wilkens C. M., Beam K. G. Excitation-contraction coupling is not affected by scrambled sequence in residues 681-690 of the dihydropyridine receptor II-III loop. J Biol Chem. 2000 Sep 29;275(39):29935–29937. doi: 10.1074/jbc.C000464200. [DOI] [PubMed] [Google Scholar]
  25. Rossi R., Bottinelli R., Sorrentino V., Reggiani C. Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles. Am J Physiol Cell Physiol. 2001 Aug;281(2):C585–C594. doi: 10.1152/ajpcell.2001.281.2.C585. [DOI] [PubMed] [Google Scholar]
  26. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  27. Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shirokova N., Shirokov R., Rossi D., González A., Kirsch W. G., García J., Sorrentino V., Ríos E. Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol. 1999 Dec 1;521(Pt 2):483–495. doi: 10.1111/j.1469-7793.1999.00483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shtifman A., Ward C. W., Wang J., Valdivia H. H., Schneider M. F. Effects of imperatoxin A on local sarcoplasmic reticulum Ca(2+) release in frog skeletal muscle. Biophys J. 2000 Aug;79(2):814–827. doi: 10.1016/S0006-3495(00)76338-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sorrentino V., Barone V., Rossi D. Intracellular Ca(2+) release channels in evolution. Curr Opin Genet Dev. 2000 Dec;10(6):662–667. doi: 10.1016/s0959-437x(00)00139-8. [DOI] [PubMed] [Google Scholar]
  31. Sorrentino V., Reggiani C. Expression of the ryanodine receptor type 3 in skeletal muscle. A new partner in excitation-contraction coupling? Trends Cardiovasc Med. 1999 Jan-Feb;9(1-2):54–61. doi: 10.1016/s1050-1738(99)00003-1. [DOI] [PubMed] [Google Scholar]
  32. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  33. Takeshima H., Iino M., Takekura H., Nishi M., Kuno J., Minowa O., Takano H., Noda T. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature. 1994 Jun 16;369(6481):556–559. doi: 10.1038/369556a0. [DOI] [PubMed] [Google Scholar]
  34. Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
  35. Tripathy A., Resch W., Xu L., Valdivia H. H., Meissner G. Imperatoxin A induces subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J Gen Physiol. 1998 May;111(5):679–690. doi: 10.1085/jgp.111.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilkens C. M., Kasielke N., Flucher B. E., Beam K. G., Grabner M. Excitation-contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720-L764 of the alpha 1S II-III loop. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5892–5897. doi: 10.1073/pnas.101618098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xu X., Bhat M. B., Nishi M., Takeshima H., Ma J. Molecular cloning of cDNA encoding a drosophila ryanodine receptor and functional studies of the carboxyl-terminal calcium release channel. Biophys J. 2000 Mar;78(3):1270–1281. doi: 10.1016/S0006-3495(00)76683-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhu X., Gurrola G., Jiang M. T., Walker J. W., Valdivia H. H. Conversion of an inactive cardiac dihydropyridine receptor II-III loop segment into forms that activate skeletal ryanodine receptors. FEBS Lett. 1999 May 7;450(3):221–226. doi: 10.1016/s0014-5793(99)00496-2. [DOI] [PubMed] [Google Scholar]
  39. el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES