Abstract
The central theme in prion diseases is the conformational transition of a cellular protein from a physiologic to a pathologic (so-called scrapie) state. Currently, two alternative models exist for the mechanism of this autocatalytic process; in the template assistance model the prion is assumed to be a monomer of the scrapie conformer, whereas in the nucleated polymerization model it is thought to be an amyloid rod. A recent variation on the latter assumes disulfide reshuffling as the mechanism of polymerization. The existence of stable dimers, let alone their mechanistic role, is not taken into account in either of these models. In this paper we review evidence supporting that the dimerization of either the normal or the scrapie state, or both, has a decisive role in prion replication. The contribution of redox changes, i.e., the temporary opening and possible rearrangement of the intramolecular disulfide bridge is also considered. We present a model including these features largely ignored so far and show that it adheres satisfactorily to the observed phenomenology of prion replication.
Full Text
The Full Text of this article is available as a PDF (91.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguzzi A., Weissmann C. Prion research: the next frontiers. Nature. 1997 Oct 23;389(6653):795–798. doi: 10.1038/39758. [DOI] [PubMed] [Google Scholar]
- Bamborough P., Wille H., Telling G. C., Yehiely F., Prusiner S. B., Cohen F. E. Prion protein structure and scrapie replication: theoretical, spectroscopic, and genetic investigations. Cold Spring Harb Symp Quant Biol. 1996;61:495–509. [PubMed] [Google Scholar]
- Bellinger-Kawahara C. G., Kempner E., Groth D., Gabizon R., Prusiner S. B. Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da. Virology. 1988 Jun;164(2):537–541. doi: 10.1016/0042-6822(88)90569-7. [DOI] [PubMed] [Google Scholar]
- Bendheim P. E., Bolton D. C. A 54-kDa normal cellular protein may be the precursor of the scrapie agent protease-resistant protein. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2214–2218. doi: 10.1073/pnas.83.7.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolton D. C., Rudelli R. D., Currie J. R., Bendheim P. E. Copurification of Sp33-37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J Gen Virol. 1991 Dec;72(Pt 12):2905–2913. doi: 10.1099/0022-1317-72-12-2905. [DOI] [PubMed] [Google Scholar]
- Borchelt D. R., Taraboulos A., Prusiner S. B. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem. 1992 Aug 15;267(23):16188–16199. [PubMed] [Google Scholar]
- Bousset L., Belrhali H., Janin J., Melki R., Morera S. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure. 2001 Jan 10;9(1):39–46. doi: 10.1016/s0969-2126(00)00553-0. [DOI] [PubMed] [Google Scholar]
- Caughey B., Raymond G. J., Kocisko D. A., Lansbury P. T., Jr Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J Virol. 1997 May;71(5):4107–4110. doi: 10.1128/jvi.71.5.4107-4110.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke R., Smith A. D., Jobst K. A., Refsum H., Sutton L., Ueland P. M. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998 Nov;55(11):1449–1455. doi: 10.1001/archneur.55.11.1449. [DOI] [PubMed] [Google Scholar]
- Cohen F. E., Prusiner S. B. Pathologic conformations of prion proteins. Annu Rev Biochem. 1998;67:793–819. doi: 10.1146/annurev.biochem.67.1.793. [DOI] [PubMed] [Google Scholar]
- Dobson C. M. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999 Sep;24(9):329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
- El-Agnaf O. M., Sheridan J. M., Sidera C., Siligardi G., Hussain R., Haris P. I., Austen B. M. Effect of the disulfide bridge and the C-terminal extension on the oligomerization of the amyloid peptide ABri implicated in familial British dementia. Biochemistry. 2001 Mar 27;40(12):3449–3457. doi: 10.1021/bi002287i. [DOI] [PubMed] [Google Scholar]
- Feughelman M., Willis B. K. Thiol-disulfide interchange a potential key to conformational change associated with amyloid fibril formation. J Theor Biol. 2000 Sep 21;206(2):313–315. doi: 10.1006/jtbi.2000.2112. [DOI] [PubMed] [Google Scholar]
- Fiser A., Cserzö M., Tüdös E., Simon I. Different sequence environments of cysteines and half cystines in proteins. Application to predict disulfide forming residues. FEBS Lett. 1992 May 11;302(2):117–120. doi: 10.1016/0014-5793(92)80419-h. [DOI] [PubMed] [Google Scholar]
- Fiser A., Simon I. Predicting the oxidation state of cysteines by multiple sequence alignment. Bioinformatics. 2000 Mar;16(3):251–256. doi: 10.1093/bioinformatics/16.3.251. [DOI] [PubMed] [Google Scholar]
- Gabizon R., McKinley M. P., Groth D. F., Kenaga L., Prusiner S. B. Properties of scrapie prion protein liposomes. J Biol Chem. 1988 Apr 5;263(10):4950–4955. [PubMed] [Google Scholar]
- Gabizon R., McKinley M. P., Prusiner S. B. Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4017–4021. doi: 10.1073/pnas.84.12.4017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison P. M., Chan H. S., Prusiner S. B., Cohen F. E. Thermodynamics of model prions and its implications for the problem of prion protein folding. J Mol Biol. 1999 Feb 19;286(2):593–606. doi: 10.1006/jmbi.1998.2497. [DOI] [PubMed] [Google Scholar]
- Herrmann L. M., Caughey B. The importance of the disulfide bond in prion protein conversion. Neuroreport. 1998 Aug 3;9(11):2457–2461. doi: 10.1097/00001756-199808030-00006. [DOI] [PubMed] [Google Scholar]
- Hope J. The nature of the scrapie agent: the evolution of the virino. Ann N Y Acad Sci. 1994 Jun 6;724:282–289. doi: 10.1111/j.1749-6632.1994.tb38917.x. [DOI] [PubMed] [Google Scholar]
- Horiuchi M., Caughey B. Prion protein interconversions and the transmissible spongiform encephalopathies. Structure. 1999 Oct 15;7(10):R231–R240. doi: 10.1016/s0969-2126(00)80049-0. [DOI] [PubMed] [Google Scholar]
- Hosszu L. L., Baxter N. J., Jackson G. S., Power A., Clarke A. R., Waltho J. P., Craven C. J., Collinge J. Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nat Struct Biol. 1999 Aug;6(8):740–743. doi: 10.1038/11507. [DOI] [PubMed] [Google Scholar]
- Iqbal K., Grundke-Iqbal I. Molecular mechanism of Alzheimer's neurofibrillary degeneration and therapeutic intervention. Ann N Y Acad Sci. 1996 Jan 17;777:132–138. doi: 10.1111/j.1749-6632.1996.tb34411.x. [DOI] [PubMed] [Google Scholar]
- Jackson G. S., Hosszu L. L., Power A., Hill A. F., Kenney J., Saibil H., Craven C. J., Waltho J. P., Clarke A. R., Collinge J. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science. 1999 Mar 19;283(5409):1935–1937. doi: 10.1126/science.283.5409.1935. [DOI] [PubMed] [Google Scholar]
- James T. L., Liu H., Ulyanov N. B., Farr-Jones S., Zhang H., Donne D. G., Kaneko K., Groth D., Mehlhorn I., Prusiner S. B. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10086–10091. doi: 10.1073/pnas.94.19.10086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janowski R., Kozak M., Jankowska E., Grzonka Z., Grubb A., Abrahamson M., Jaskolski M. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol. 2001 Apr;8(4):316–320. doi: 10.1038/86188. [DOI] [PubMed] [Google Scholar]
- Kaneko K., Zulianello L., Scott M., Cooper C. M., Wallace A. C., James T. L., Cohen F. E., Prusiner S. B. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10069–10074. doi: 10.1073/pnas.94.19.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaus K. J., Morillas M., Swietnicki W., Malone M., Surewicz W. K., Yee V. C. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol. 2001 Sep;8(9):770–774. doi: 10.1038/nsb0901-770. [DOI] [PubMed] [Google Scholar]
- Kocisko D. A., Come J. H., Priola S. A., Chesebro B., Raymond G. J., Lansbury P. T., Caughey B. Cell-free formation of protease-resistant prion protein. Nature. 1994 Aug 11;370(6489):471–474. doi: 10.1038/370471a0. [DOI] [PubMed] [Google Scholar]
- Liemann S., Glockshuber R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry. 1999 Mar 16;38(11):3258–3267. doi: 10.1021/bi982714g. [DOI] [PubMed] [Google Scholar]
- López Garcia F., Zahn R., Riek R., Wüthrich K. NMR structure of the bovine prion protein. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8334–8339. doi: 10.1073/pnas.97.15.8334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Maiti N. R., Surewicz W. K. The role of disulfide bridge in the folding and stability of the recombinant human prion protein. J Biol Chem. 2000 Nov 7;276(4):2427–2431. doi: 10.1074/jbc.M007862200. [DOI] [PubMed] [Google Scholar]
- McKinley M. P., Meyer R. K., Kenaga L., Rahbar F., Cotter R., Serban A., Prusiner S. B. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol. 1991 Mar;65(3):1340–1351. doi: 10.1128/jvi.65.3.1340-1351.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehlhorn I., Groth D., Stöckel J., Moffat B., Reilly D., Yansura D., Willett W. S., Baldwin M., Fletterick R., Cohen F. E. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry. 1996 Apr 30;35(17):5528–5537. doi: 10.1021/bi952965e. [DOI] [PubMed] [Google Scholar]
- Meyer R. K., Lustig A., Oesch B., Fatzer R., Zurbriggen A., Vandevelde M. A monomer-dimer equilibrium of a cellular prion protein (PrPC) not observed with recombinant PrP. J Biol Chem. 2000 Dec 1;275(48):38081–38087. doi: 10.1074/jbc.M007114200. [DOI] [PubMed] [Google Scholar]
- Muramoto T., Scott M., Cohen F. E., Prusiner S. B. Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15457–15462. doi: 10.1073/pnas.93.26.15457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrett S., Freeman S. J., Butler P. J., Fersht A. R. Equilibrium folding properties of the yeast prion protein determinant Ure2. J Mol Biol. 1999 Jul 2;290(1):331–345. doi: 10.1006/jmbi.1999.2872. [DOI] [PubMed] [Google Scholar]
- Priola S. A., Caughey B., Wehrly K., Chesebro B. A 60-kDa prion protein (PrP) with properties of both the normal and scrapie-associated forms of PrP. J Biol Chem. 1995 Feb 17;270(7):3299–3305. doi: 10.1074/jbc.270.7.3299. [DOI] [PubMed] [Google Scholar]
- Prusiner S. B., Groth D., Serban A., Stahl N., Gabizon R. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2793–2797. doi: 10.1073/pnas.90.7.2793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prusiner S. B. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prusiner S. B., Scott M., Foster D., Pan K. M., Groth D., Mirenda C., Torchia M., Yang S. L., Serban D., Carlson G. A. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell. 1990 Nov 16;63(4):673–686. doi: 10.1016/0092-8674(90)90134-z. [DOI] [PubMed] [Google Scholar]
- Requena J. R., Levine R. L. Thioredoxin converts the Syrian hamster (29-231) recombinant prion protein to an insoluble form. Free Radic Biol Med. 2001 Jan 15;30(2):141–147. doi: 10.1016/s0891-5849(00)00430-5. [DOI] [PubMed] [Google Scholar]
- Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997 Aug 18;413(2):282–288. doi: 10.1016/s0014-5793(97)00920-4. [DOI] [PubMed] [Google Scholar]
- Schweers O., Mandelkow E. M., Biernat J., Mandelkow E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8463–8467. doi: 10.1073/pnas.92.18.8463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sklaviadis T. K., Manuelidis L., Manuelidis E. E. Physical properties of the Creutzfeldt-Jakob disease agent. J Virol. 1989 Mar;63(3):1212–1222. doi: 10.1128/jvi.63.3.1212-1222.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl N., Baldwin M. A., Teplow D. B., Hood L., Gibson B. W., Burlingame A. L., Prusiner S. B. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 1993 Mar 2;32(8):1991–2002. doi: 10.1021/bi00059a016. [DOI] [PubMed] [Google Scholar]
- Swietnicki W., Petersen R. B., Gambetti P., Surewicz W. K. Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem. 1998 Nov 20;273(47):31048–31052. doi: 10.1074/jbc.273.47.31048. [DOI] [PubMed] [Google Scholar]
- Taraboulos A., Raeber A. J., Borchelt D. R., Serban D., Prusiner S. B. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell. 1992 Aug;3(8):851–863. doi: 10.1091/mbc.3.8.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taubes G. Misfolding the way to disease. Science. 1996 Mar 15;271(5255):1493–1495. doi: 10.1126/science.271.5255.1493. [DOI] [PubMed] [Google Scholar]
- Telling G. C., Scott M., Mastrianni J., Gabizon R., Torchia M., Cohen F. E., DeArmond S. J., Prusiner S. B. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell. 1995 Oct 6;83(1):79–90. doi: 10.1016/0092-8674(95)90236-8. [DOI] [PubMed] [Google Scholar]
- Tompa P., Friedrich P. Prion proteins as memory molecules: an hypothesis. Neuroscience. 1998 Oct;86(4):1037–1043. doi: 10.1016/s0306-4522(98)00148-1. [DOI] [PubMed] [Google Scholar]
- Tompa P., Tusnády G. E., Cserzo M., Simon I. Prion protein: evolution caught en route. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4431–4436. doi: 10.1073/pnas.071308398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- True H. L., Lindquist S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature. 2000 Sep 28;407(6803):477–483. doi: 10.1038/35035005. [DOI] [PubMed] [Google Scholar]
- Turk E., Teplow D. B., Hood L. E., Prusiner S. B. Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem. 1988 Sep 1;176(1):21–30. doi: 10.1111/j.1432-1033.1988.tb14246.x. [DOI] [PubMed] [Google Scholar]
- Warwicker J., Gane P. J. A model for prion protein dimerisation based on alpha-helical packing. Biochem Biophys Res Commun. 1996 Sep 24;226(3):777–782. doi: 10.1006/bbrc.1996.1428. [DOI] [PubMed] [Google Scholar]
- Warwicker J. Modeling a prion protein dimer: predictions for fibril formation. Biochem Biophys Res Commun. 2000 Nov 30;278(3):646–652. doi: 10.1006/bbrc.2000.3829. [DOI] [PubMed] [Google Scholar]
- Warwicker J. Species barriers in a model for specific prion protein dimerisation. Biochem Biophys Res Commun. 1997 Mar 17;232(2):508–512. doi: 10.1006/bbrc.1997.6325. [DOI] [PubMed] [Google Scholar]
- Weissmann C., Fischer M., Raeber A., Büeler H., Sailer A., Shmerling D., Rülicke T., Brandner S., Aguzzi A. The use of transgenic mice in the investigation of transmissible spongiform encephalopathies. Int J Exp Pathol. 1996 Dec;77(6):283–293. [PMC free article] [PubMed] [Google Scholar]
- Weissmann C. The Ninth Datta Lecture. Molecular biology of transmissible spongiform encephalopathies. FEBS Lett. 1996 Jun 24;389(1):3–11. doi: 10.1016/0014-5793(96)00610-2. [DOI] [PubMed] [Google Scholar]
- Welker E., Wedemeyer W. J., Scheraga H. A. A role for intermolecular disulfide bonds in prion diseases? Proc Natl Acad Sci U S A. 2001 Mar 27;98(8):4334–4336. doi: 10.1073/pnas.071066598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickner R. B., Edskes H. K., Maddelein M. L., Taylor K. L., Moriyama H. Prions of yeast and fungi. Proteins as genetic material. J Biol Chem. 1999 Jan 8;274(2):555–558. doi: 10.1074/jbc.274.2.555. [DOI] [PubMed] [Google Scholar]
- Wille H., Zhang G. F., Baldwin M. A., Cohen F. E., Prusiner S. B. Separation of scrapie prion infectivity from PrP amyloid polymers. J Mol Biol. 1996 Jun 21;259(4):608–621. doi: 10.1006/jmbi.1996.0343. [DOI] [PubMed] [Google Scholar]
- Yanai A., Meiner Z., Gahali I., Gabizon R., Taraboulos A. Subcellular trafficking abnormalities of a prion protein with a disrupted disulfide loop. FEBS Lett. 1999 Oct 22;460(1):11–16. doi: 10.1016/s0014-5793(99)01316-2. [DOI] [PubMed] [Google Scholar]
- Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145–150. doi: 10.1073/pnas.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H., Stockel J., Mehlhorn I., Groth D., Baldwin M. A., Prusiner S. B., James T. L., Cohen F. E. Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry. 1997 Mar 25;36(12):3543–3553. doi: 10.1021/bi961965r. [DOI] [PubMed] [Google Scholar]