Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2123–2133. doi: 10.1016/S0006-3495(02)75559-8

A model of cross-bridge attachment to actin in the A*M*ATP state based on x-ray diffraction from permeabilized rabbit psoas muscle.

Jin Gu 1, Sengen Xu 1, Leepo C Yu 1
PMCID: PMC1302006  PMID: 11916868

Abstract

A model of cross-bridges binding to actin in the weak binding A*M*ATP state is presented. The modeling was based on the x-ray diffraction patterns from the relaxed skinned rabbit psoas muscle fibers where ATP hydrolysis was inhibited by N-phenylmaleimide treatment (S. Xu, J. Gu, G. Melvin, L. C. Yu. 2002. Biophys. J. 82:2111-2122). Calculations included both the myosin filaments and the actin filaments of the muscle cells, and the binding to actin was assumed to be single headed. To achieve a good fit, considerable flexibility in the orientation of the myosin head and the position of the S1-S2 junction is necessary, such that the myosin head can bind to a nearby actin whereas the tail end was kept in the proximity of the helical track of the myosin filament. Hence, the best-fit model shows that the head binds to actin in a wide range of orientations, and the tail end deviates substantially from its lattice position in the radial direction (approximately 60 A). Surprisingly, the best fit model reveals that the detached head, whose location thus far has remained undetected, seems to be located close to the surface of the myosin filament. Another significant requirement of the best-fit model is that the binding site on actin is near the N terminus of the actin subunit, a position distinct from the putative rigor-binding site. The results support the idea that the essential role played by the weak binding states M*ATP <--> A*M*ATP for force generation lies in its flexibility, because the probability of attachment is greatly increased, compared with the weak binding M*ADP*P(i) <--> A*M*ADP*P(i) states.

Full Text

The Full Text of this article is available as a PDF (387.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett V. A., Schoenberg M. The strength of binding of the weakly-binding crossbridge created by sulfhydryl modification has very low calcium sensitivity. Adv Exp Med Biol. 1993;332:133–140. doi: 10.1007/978-1-4615-2872-2_12. [DOI] [PubMed] [Google Scholar]
  2. Brenner B., Yu L. C., Chalovich J. M. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5739–5743. doi: 10.1073/pnas.88.13.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chalovich J. M., Chock P. B., Eisenberg E. Mechanism of action of troponin . tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J Biol Chem. 1981 Jan 25;256(2):575–578. [PMC free article] [PubMed] [Google Scholar]
  4. Chalovich J. M., Eisenberg E. Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem. 1982 Mar 10;257(5):2432–2437. [PMC free article] [PubMed] [Google Scholar]
  5. Chalovich J. M., Eisenberg E. The effect of troponin-tropomyosin on the binding of heavy meromyosin to actin in the presence of ATP. J Biol Chem. 1986 Apr 15;261(11):5088–5093. [PMC free article] [PubMed] [Google Scholar]
  6. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  8. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  9. Frado L. L., Craig R. Electron microscopy of the actin-myosin head complex in the presence of ATP. J Mol Biol. 1992 Jan 20;223(2):391–397. doi: 10.1016/0022-2836(92)90659-8. [DOI] [PubMed] [Google Scholar]
  10. Gu J., Yu L. C. X-ray diffraction of helices with arbitrary periodic ligand binding. Acta Crystallogr D Biol Crystallogr. 1999 Dec;55(Pt 12):2022–2027. doi: 10.1107/s0907444999013335. [DOI] [PubMed] [Google Scholar]
  11. Hansen J. E., Marner J., Pavlov D., Rubenstein P. A., Reisler E. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle. Biochemistry. 2000 Feb 22;39(7):1792–1799. doi: 10.1021/bi991873c. [DOI] [PubMed] [Google Scholar]
  12. Hirose K., Wakabayashi T. Thin filaments of rabbit skeletal muscle are in helical register. J Mol Biol. 1988 Dec 5;204(3):797–801. doi: 10.1016/0022-2836(88)90371-3. [DOI] [PubMed] [Google Scholar]
  13. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  14. Houdusse A., Szent-Gyorgyi A. G., Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238–11243. doi: 10.1073/pnas.200376897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  16. Juanhuix J., Bordas J., Campmany J., Svensson A., Bassford M. L., Narayanan T. Axial disposition of myosin heads in isometrically contracting muscles. Biophys J. 2001 Mar;80(3):1429–1441. doi: 10.1016/S0006-3495(01)76115-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  18. Kim D. S., Takezawa Y., Ogino M., Kobayashi T., Arata T., Wakabayashi K. X-ray diffraction studies on the structural changes of rigor muscles induced by binding of phosphate analogs in the presence of MgADP. Biophys Chem. 1998 Aug 4;74(1):71–82. doi: 10.1016/s0301-4622(98)00166-5. [DOI] [PubMed] [Google Scholar]
  19. Kraft T., Chalovich J. M., Yu L. C., Brenner B. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation. Biophys J. 1995 Jun;68(6):2404–2418. doi: 10.1016/S0006-3495(95)80423-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linari M., Lucii L., Reconditi M., Casoni M. E., Amenitsch H., Bernstorff S., Piazzesi G., Lombardi V. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres. J Physiol. 2000 Aug 1;526(Pt 3):589–596. doi: 10.1111/j.1469-7793.2000.00589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lowy J., Popp D., Stewart A. A. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys J. 1991 Oct;60(4):812–824. doi: 10.1016/S0006-3495(91)82116-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Malinchik S. B., Lednev V. V. Interpretation of the X-ray diffraction pattern from relaxed skeletal muscle and modelling of the thick filament structure. J Muscle Res Cell Motil. 1992 Aug;13(4):406–419. doi: 10.1007/BF01738036. [DOI] [PubMed] [Google Scholar]
  23. Malinchik S., Xu S., Yu L. C. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys J. 1997 Nov;73(5):2304–2312. doi: 10.1016/S0006-3495(97)78262-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mendelson R., Morris E. P. The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8533–8538. doi: 10.1073/pnas.94.16.8533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  26. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  27. Rayment I., Smith C., Yount R. G. The active site of myosin. Annu Rev Physiol. 1996;58:671–702. doi: 10.1146/annurev.ph.58.030196.003323. [DOI] [PubMed] [Google Scholar]
  28. Rome E., Offer G., Pepe F. A. X-ray diffraction of muscle labelled with antibody to C-protein. Nat New Biol. 1973 Aug 1;244(135):152–154. doi: 10.1038/newbio244152a0. [DOI] [PubMed] [Google Scholar]
  29. Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
  30. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  31. Squire J. M., Harford J. J., Edman A. C., Sjöström M. Fine structure of the A-band in cryo-sections. III. Crossbridge distribution and the axial structure of the human C-zone. J Mol Biol. 1982 Mar 15;155(4):467–494. doi: 10.1016/0022-2836(82)90482-x. [DOI] [PubMed] [Google Scholar]
  32. Squire J. M. Muscle filament structure and muscle contraction. Annu Rev Biophys Bioeng. 1975;4(00):137–163. doi: 10.1146/annurev.bb.04.060175.001033. [DOI] [PubMed] [Google Scholar]
  33. Stewart M., Kensler R. W. Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol. 1986 Dec 20;192(4):831–851. doi: 10.1016/0022-2836(86)90032-x. [DOI] [PubMed] [Google Scholar]
  34. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
  35. Taylor K. A., Schmitz H., Reedy M. C., Goldman Y. E., Franzini-Armstrong C., Sasaki H., Tregear R. T., Poole K., Lucaveche C., Edwards R. J. Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell. 1999 Nov 12;99(4):421–431. doi: 10.1016/s0092-8674(00)81528-7. [DOI] [PubMed] [Google Scholar]
  36. Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys. 1996;33:123–134. [PubMed] [Google Scholar]
  37. White H. D., Belknap B., Webb M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry. 1997 Sep 30;36(39):11828–11836. doi: 10.1021/bi970540h. [DOI] [PubMed] [Google Scholar]
  38. Xie L., Li W. X., Rhodes T., White H., Schoenberg M. Transient kinetic analysis of N-phenylmaleimide-reacted myosin subfragment-1. Biochemistry. 1999 May 4;38(18):5925–5931. doi: 10.1021/bi981778o. [DOI] [PubMed] [Google Scholar]
  39. Xu S., Gu J., Melvin G., Yu L. C. Structural characterization of weakly attached cross-bridges in the A*M*ATP state in permeabilized rabbit psoas muscle. Biophys J. 2002 Apr;82(4):2111–2122. doi: 10.1016/S0006-3495(02)75558-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xu S., Gu J., Rhodes T., Belknap B., Rosenbaum G., Offer G., White H., Yu L. C. The M.ADP.Pi state is required for helical order in the thick filaments of skeletal muscle. Biophys J. 1999 Nov;77(5):2665–2676. doi: 10.1016/s0006-3495(99)77101-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xu S., Yu L. C., Schoenberg M. Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution. Biophys J. 1998 Mar;74(3):1110–1114. doi: 10.1016/S0006-3495(98)77829-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES