Abstract
Deuterium/hydrogen exchange factors (chi) were measured for the backbone amide sites of the membrane-bound forms of the 50-residue fd coat protein and the 23-residue magainin2 peptide in lipid micelles by solution nuclear magnetic resonance spectroscopy. By combining kinetic and thermodynamic effects, deuterium/hydrogen exchange factors overcome the principal limitations encountered in the measurements of kinetic protection factors and thermodynamic fractionation factors for membrane proteins. The magnitudes of the exchange factors can be correlated with the structure and topology of membrane-associated polypeptides. In fd coat protein, residues in the transmembrane helix have exchange factors that are substantially smaller than those in the amphipathic surface helix or the loop connecting the two helices. For the amphipathic helical peptide, magainin2, the exchange factors of residues exposed to the solvent are appreciably larger than those that face the hydrocarbon portion of membrane bilayers. These examples demonstrate that deuterium/hydrogen exchange factors can be measured by solution NMR spectroscopy and used to identify residues in transmembrane helices as well as to determine the polarity of amphipathic helices in membrane proteins.
Full Text
The Full Text of this article is available as a PDF (111.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida F. C., Opella S. J. fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix. J Mol Biol. 1997 Jul 18;270(3):481–495. doi: 10.1006/jmbi.1997.1114. [DOI] [PubMed] [Google Scholar]
- Bowers P. M., Klevit R. E. Hydrogen bonding and equilibrium isotope enrichment in histidine-containing proteins. Nat Struct Biol. 1996 Jun;3(6):522–531. doi: 10.1038/nsb0696-522. [DOI] [PubMed] [Google Scholar]
- Cotten M., Fu R., Cross T. A. Solid-state NMR and hydrogen-deuterium exchange in a bilayer-solubilized peptide: structural and mechanistic implications. Biophys J. 1999 Mar;76(3):1179–1189. doi: 10.1016/S0006-3495(99)77282-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotten M., Tian C., Busath D. D., Shirts R. B., Cross T. A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 1999 Jul 20;38(29):9185–9197. doi: 10.1021/bi982981m. [DOI] [PubMed] [Google Scholar]
- Czerski L., Vinogradova O., Sanders C. R. NMR-Based amide hydrogen-deuterium exchange measurements for complex membrane proteins: development and critical evaluation. J Magn Reson. 2000 Jan;142(1):111–119. doi: 10.1006/jmre.1999.1920. [DOI] [PubMed] [Google Scholar]
- Deber C. M., Wang C., Liu L. P., Prior A. S., Agrawal S., Muskat B. L., Cuticchia A. J. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 2001 Jan;10(1):212–219. doi: 10.1110/ps.30301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey C. E., Handcock L. J. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements. Biophys J. 1996 Apr;70(4):1777–1788. doi: 10.1016/S0006-3495(96)79741-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
- Feng Z. P., Zhang C. T. Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem. 2000 May;19(4):269–275. doi: 10.1023/a:1007091128394. [DOI] [PubMed] [Google Scholar]
- Forrest L. R., Tieleman D. P., Sansom M. S. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer. Biophys J. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gesell J., Zasloff M., Opella S. J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR. 1997 Feb;9(2):127–135. doi: 10.1023/a:1018698002314. [DOI] [PubMed] [Google Scholar]
- Harris T. K., Abeygunawardana C., Mildvan A. S. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Biochemistry. 1997 Dec 2;36(48):14661–14675. doi: 10.1021/bi972039v. [DOI] [PubMed] [Google Scholar]
- Harris T. K., Mildvan A. S. High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods. Proteins. 1999 May 15;35(3):275–282. doi: 10.1002/(sici)1097-0134(19990515)35:3<275::aid-prot1>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Henry G. D., Sykes B. D. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry. 1990 Jul 3;29(26):6303–6313. doi: 10.1021/bi00478a027. [DOI] [PubMed] [Google Scholar]
- Henry G. D., Sykes B. D. Methods to study membrane protein structure in solution. Methods Enzymol. 1994;239:515–535. doi: 10.1016/s0076-6879(94)39020-7. [DOI] [PubMed] [Google Scholar]
- Huo S., Arumugam S., Cross T. A. Hydrogen exchange in the lipid bilayer-bound gramicidin channel. Solid State Nucl Magn Reson. 1996 Dec;7(3):177–183. doi: 10.1016/s0926-2040(96)01260-x. [DOI] [PubMed] [Google Scholar]
- Jacoboni I., Martelli P. L., Fariselli P., De Pinto V., Casadio R. Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci. 2001 Apr;10(4):779–787. doi: 10.1110/ps.37201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khare D., Alexander P., Orban J. Hydrogen bonding and equilibrium protium-deuterium fractionation factors in the immunoglobulin G binding domain of protein G. Biochemistry. 1999 Mar 30;38(13):3918–3925. doi: 10.1021/bi9827114. [DOI] [PubMed] [Google Scholar]
- Lecompte O., Thompson J. D., Plewniak F., Thierry J., Poch O. Multiple alignment of complete sequences (MACS) in the post-genomic era. Gene. 2001 May 30;270(1-2):17–30. doi: 10.1016/s0378-1119(01)00461-9. [DOI] [PubMed] [Google Scholar]
- Li R., Woodward C. The hydrogen exchange core and protein folding. Protein Sci. 1999 Aug;8(8):1571–1590. doi: 10.1110/ps.8.8.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liakopoulos T. D., Pasquier C., Hamodrakas S. J. A novel tool for the prediction of transmembrane protein topology based on a statistical analysis of the SwissProt database: the OrienTM algorithm. Protein Eng. 2001 Jun;14(6):387–390. doi: 10.1093/protein/14.6.387. [DOI] [PubMed] [Google Scholar]
- Lin J., Westler W. M., Cleland W. W., Markley J. L., Frey P. A. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14664–14668. doi: 10.1073/pnas.95.25.14664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loh S. N., Markley J. L. Hydrogen bonding in proteins as studied by amide hydrogen D/H fractionation factors: application to staphylococcal nuclease. Biochemistry. 1994 Feb 1;33(4):1029–1036. doi: 10.1021/bi00170a023. [DOI] [PubMed] [Google Scholar]
- Lolkema J. S., Slotboom D. J. Estimation of structural similarity of membrane proteins by hydropathy profile alignment. Mol Membr Biol. 1998 Jan-Mar;15(1):33–42. doi: 10.3109/09687689809027516. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
- Marassi F. M., Ma C., Gesell J. J., Opella S. J. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly (15)N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson. 2000 May;144(1):156–161. doi: 10.1006/jmre.2000.2036. [DOI] [PubMed] [Google Scholar]
- McDonnell P. A., Shon K., Kim Y., Opella S. J. fd coat protein structure in membrane environments. J Mol Biol. 1993 Oct 5;233(3):447–463. doi: 10.1006/jmbi.1993.1523. [DOI] [PubMed] [Google Scholar]
- Morein S., Trouard T. P., Hauksson J. B., Rilfors L., Arvidson G., Lindblom G. Two-dimensional 1H-NMR of transmembrane peptides from Escherichia coli phosphatidylglycerophosphate synthase in micelles. Eur J Biochem. 1996 Oct 15;241(2):489–497. doi: 10.1111/j.1432-1033.1996.00489.x. [DOI] [PubMed] [Google Scholar]
- Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
- O'Neil J. D., Sykes B. D. Structure and dynamics of a detergent-solubilized membrane protein: measurement of amide hydrogen exchange rates in M13 coat protein by 1H NMR spectroscopy. Biochemistry. 1988 Apr 19;27(8):2753–2762. doi: 10.1021/bi00408a015. [DOI] [PubMed] [Google Scholar]
- Opella S. J. NMR and membrane proteins. Nat Struct Biol. 1997 Oct;4 (Suppl):845–848. [PubMed] [Google Scholar]
- Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
- Ramamoorthy A., Marassi F. M., Zasloff M., Opella S. J. Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR. 1995 Nov;6(3):329–334. doi: 10.1007/BF00197814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayan A., Siew N., Cherno-Schwartz S., Matzner Y., Bautsch W., Goldblum A. A novel computational method for predicting the transmembrane structure of G-protein coupled receptors: application to human C5aR and C3aR. Receptors Channels. 2000;7(2):121–137. [PubMed] [Google Scholar]
- Sessions R. B., Gibbs N., Dempsey C. E. Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol. Biophys J. 1998 Jan;74(1):138–152. doi: 10.1016/S0006-3495(98)77775-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
- Tusnády G. E., Simon I. Topology of membrane proteins. J Chem Inf Comput Sci. 2001 Mar-Apr;41(2):364–368. doi: 10.1021/ci0001280. [DOI] [PubMed] [Google Scholar]
- Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
- Williams K. A., Farrow N. A., Deber C. M., Kay L. E. Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. Biochemistry. 1996 Apr 23;35(16):5145–5157. doi: 10.1021/bi952897w. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., Hristova K., Ladokhin A. S., Silvestro L., Axelsen P. H., White S. H. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol. 1998 Apr 17;277(5):1091–1110. doi: 10.1006/jmbi.1998.1640. [DOI] [PubMed] [Google Scholar]
- Zhang Y. P., Lewis R. N., Henry G. D., Sykes B. D., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide. Biochemistry. 1995 Feb 21;34(7):2348–2361. doi: 10.1021/bi00007a031. [DOI] [PubMed] [Google Scholar]