Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2304–2316. doi: 10.1016/S0006-3495(02)75576-8

Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.

Régis Pomès 1, Benoît Roux 1
PMCID: PMC1302023  PMID: 11964221

Abstract

The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it provides a coordination of water molecules well suited both to proton hydration and to high proton mobility, and it facilitates the slower reorientation or turn step of the Grotthuss mechanism by stabilizing intermediate configurations of the hydrogen-bonded network in which water molecules are in the process of flipping between their two preferred, polarized states. This mechanism offers a detailed molecular model for the rapid transport of protons in channels, in energy-transducing membrane proteins, and in enzymes.

Full Text

The Full Text of this article is available as a PDF (485.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akeson M., Deamer D. W. Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases? Biophys J. 1991 Jul;60(1):101–109. doi: 10.1016/S0006-3495(91)82034-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  3. Brewer M. L., Schmitt U. W., Voth G. A. The formation and dynamics of proton wires in channel environments. Biophys J. 2001 Apr;80(4):1691–1702. doi: 10.1016/S0006-3495(01)76140-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiu S. W., Jakobsson E., Subramaniam S., McCammon J. A. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys J. 1991 Jul;60(1):273–285. doi: 10.1016/S0006-3495(91)82049-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiu S. W., Subramaniam S., Jakobsson E., McCammon J. A. Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. Biophys J. 1989 Aug;56(2):253–261. doi: 10.1016/S0006-3495(89)82671-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cukierman S. Proton mobilities in water and in different stereoisomers of covalently linked gramicidin A channels. Biophys J. 2000 Apr;78(4):1825–1834. doi: 10.1016/S0006-3495(00)76732-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dencher N. A., Sass H. J., Büldt G. Water and bacteriorhodopsin: structure, dynamics, and function. Biochim Biophys Acta. 2000 Aug 30;1460(1):192–203. doi: 10.1016/s0005-2728(00)00139-0. [DOI] [PubMed] [Google Scholar]
  8. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  9. Eisenman G., Enos B., Hägglund J., Sandblom J. Gramicidin as an example of a single-filing ionic channel. Ann N Y Acad Sci. 1980;339:8–20. doi: 10.1111/j.1749-6632.1980.tb15964.x. [DOI] [PubMed] [Google Scholar]
  10. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  11. Jordan P. C. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study. Biophys J. 1990 Nov;58(5):1133–1156. doi: 10.1016/S0006-3495(90)82456-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kandori H. Role of internal water molecules in bacteriorhodopsin. Biochim Biophys Acta. 2000 Aug 30;1460(1):177–191. doi: 10.1016/s0005-2728(00)00138-9. [DOI] [PubMed] [Google Scholar]
  13. Lanyi J. K. Bacteriorhodopsin. Int Rev Cytol. 1999;187:161–202. doi: 10.1016/s0074-7696(08)62418-3. [DOI] [PubMed] [Google Scholar]
  14. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  15. Luecke H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim Biophys Acta. 2000 Aug 30;1460(1):133–156. doi: 10.1016/s0005-2728(00)00135-3. [DOI] [PubMed] [Google Scholar]
  16. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  17. Marrink S. J., Jähnig F., Berendsen H. J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996 Aug;71(2):632–647. doi: 10.1016/S0006-3495(96)79264-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nagle J. F. Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):413–426. doi: 10.1007/BF00770027. [DOI] [PubMed] [Google Scholar]
  20. Okamura M. Y., Paddock M. L., Graige M. S., Feher G. Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta. 2000 May 12;1458(1):148–163. doi: 10.1016/s0005-2728(00)00065-7. [DOI] [PubMed] [Google Scholar]
  21. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phillips L. R., Cole C. D., Hendershot R. J., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophys J. 2008 Nov 21;77(5):2492–2501. doi: 10.1016/S0006-3495(99)77085-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pomès R., Roux B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J. 1998 Jul;75(1):33–40. doi: 10.1016/S0006-3495(98)77492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pomès R., Roux B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys J. 1996 Jul;71(1):19–39. doi: 10.1016/S0006-3495(96)79211-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quigley E. P., Quigley P., Crumrine D. S., Cukierman S. The conduction of protons in different stereoisomers of dioxolane-linked gramicidin A channels. Biophys J. 1999 Nov;77(5):2479–2491. doi: 10.1016/S0006-3495(99)77084-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roux B., Karplus M. Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 1994;23:731–761. doi: 10.1146/annurev.bb.23.060194.003503. [DOI] [PubMed] [Google Scholar]
  27. Sagnella D. E., Laasonen K., Klein M. L. Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A. Biophys J. 1996 Sep;71(3):1172–1178. doi: 10.1016/S0006-3495(96)79321-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saraste M. Oxidative phosphorylation at the fin de siècle. Science. 1999 Mar 5;283(5407):1488–1493. doi: 10.1126/science.283.5407.1488. [DOI] [PubMed] [Google Scholar]
  29. Schumaker M. F., Pomès R., Roux B. A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. Biophys J. 2000 Dec;79(6):2840–2857. doi: 10.1016/S0006-3495(00)76522-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schumaker M. F., Pomès R., Roux B. Framework model for single proton conduction through gramicidin. Biophys J. 2001 Jan;80(1):12–30. doi: 10.1016/S0006-3495(01)75992-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sjögren T., Svensson-Ek M., Hajdu J., Brzezinski P. Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: a combined flash photolysis and X-ray crystallography study. Biochemistry. 2000 Sep 12;39(36):10967–10974. doi: 10.1021/bi000179q. [DOI] [PubMed] [Google Scholar]
  32. Tian F., Cross T. A. Cation transport: an example of structural based selectivity. J Mol Biol. 1999 Feb 5;285(5):1993–2003. doi: 10.1006/jmbi.1998.2434. [DOI] [PubMed] [Google Scholar]
  33. Wikström M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr Opin Struct Biol. 1998 Aug;8(4):480–488. doi: 10.1016/s0959-440x(98)80127-9. [DOI] [PubMed] [Google Scholar]
  34. Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zaslavsky D., Gennis R. B. Proton pumping by cytochrome oxidase: progress, problems and postulates. Biochim Biophys Acta. 2000 May 12;1458(1):164–179. doi: 10.1016/s0005-2728(00)00066-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES