Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2317–2325. doi: 10.1016/S0006-3495(02)75577-X

Simulations of membranes and other interfacial systems using P2(1) and Pc periodic boundary conditions.

Elizabeth A Dolan 1, Richard M Venable 1, Richard W Pastor 1, Bernard R Brooks 1
PMCID: PMC1302024  PMID: 11964222

Abstract

We demonstrate the ease and utility of simulating heterogeneous interfacial systems with P2(1) and Pc periodic boundary conditions which allow, for example, lipids in a membrane to switch leaflets. In preliminary tests, P2(1) was shown to yield equivalent results to P1 in simulations of bulk water, a water/vacuum interface, and pure DPPC bilayers with an equal number of lipids per leaflet; equivalence of Pc and P1 was also demonstrated for the former two systems. P2(1) was further tested in simulations involving the spreading of an octane film on water, and equilibration of a DPPC bilayer from an initial condition containing different numbers of lipids in the two leaflets. Lastly, a simulation in P2(1) of a DOPC/melittin membrane showed significant passage of lipids to the melittin-containing leaflet from the initial distribution, and lends insight into the condensation of lipids by melittin.

Full Text

The Full Text of this article is available as a PDF (614.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  2. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dufourc E. J., Smith I. C., Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry. 1986 Oct 21;25(21):6448–6455. doi: 10.1021/bi00369a016. [DOI] [PubMed] [Google Scholar]
  4. Feller S. E., Pastor R. W. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys J. 1996 Sep;71(3):1350–1355. doi: 10.1016/S0006-3495(96)79337-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feller S. E., Yin D., Pastor R. W., MacKerell A. D., Jr Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997 Nov;73(5):2269–2279. doi: 10.1016/S0006-3495(97)78259-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forrest L. R., Sansom M. S. Membrane simulations: bigger and better? Curr Opin Struct Biol. 2000 Apr;10(2):174–181. doi: 10.1016/s0959-440x(00)00066-x. [DOI] [PubMed] [Google Scholar]
  7. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985 Mar;31(3):1695–1697. doi: 10.1103/physreva.31.1695. [DOI] [PubMed] [Google Scholar]
  8. Hristova K., Dempsey C. E., White S. H. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J. 2001 Feb;80(2):801–811. doi: 10.1016/S0006-3495(01)76059-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hyvönen M. T., Rantala T. T., Ala-Korpela M. Structure and dynamic properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation. Biophys J. 1997 Dec;73(6):2907–2923. doi: 10.1016/S0006-3495(97)78319-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. La Rocca P., Biggin P. C., Tieleman D. P., Sansom M. S. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):185–200. doi: 10.1016/s0005-2736(99)00206-0. [DOI] [PubMed] [Google Scholar]
  11. Nagle J. F., Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000 Nov 10;1469(3):159–195. doi: 10.1016/s0304-4157(00)00016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
  13. Tang Y. Z., Chen W. Z., Wang C. X., Shi Y. Y. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur Biophys J. 1999;28(6):478–488. doi: 10.1007/s002490050230. [DOI] [PubMed] [Google Scholar]
  14. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  15. Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES