Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2333–2343. doi: 10.1016/S0006-3495(02)75579-3

Quantitative analysis of actin patch movement in yeast.

A E Carlsson 1, A D Shah 1, D Elking 1, T S Karpova 1, J A Cooper 1
PMCID: PMC1302026  PMID: 11964224

Abstract

To investigate the mechanism of cortical actin patch movement in yeast, we implement a method for computer tracking the motion of the patches. Digital images from fluorescence microscope movies of living cells are fed into an image-processing program, which generates two-dimensional patch coordinates in the plane of focus for each movie frame via an algorithm based on detection of rapid intensity variations. The patch coordinates in neighboring frames are connected by a minimum-distance algorithm. The method is used to analyze control cells and cells treated with the actin-depolymerizing agent latrunculin. The motion of the patches in both cases, as analyzed by mean-square patch displacements, is found to be a random walk on average, with a much lower diffusion coefficient for the latrunculin-treated cells. The mean-squared patch travel distances for all of the latrunculin-treated cells are lower than those for all of the control cells. The patches move independently of one another. We develop a quantitative criterion for the presence of directed motion, and show that numerous patches in the control cells display directed motion to a very high degree of certainty. A small number of patches in the latrunculin-treated cells display directed motion.

Full Text

The Full Text of this article is available as a PDF (275.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron L. A., Footer M. J., van Oudenaarden A., Theriot J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4908–4913. doi: 10.1073/pnas.96.9.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doyle T., Botstein D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3886–3891. doi: 10.1073/pnas.93.9.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gerbal F., Chaikin P., Rabin Y., Prost J. An elastic analysis of Listeria monocytogenes propulsion. Biophys J. 2000 Nov;79(5):2259–2275. doi: 10.1016/S0006-3495(00)76473-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heil-Chapdelaine R. A., Oberle J. R., Cooper J. A. The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J Cell Biol. 2000 Dec 11;151(6):1337–1344. doi: 10.1083/jcb.151.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karpova T. S., McNally J. G., Moltz S. L., Cooper J. A. Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J Cell Biol. 1998 Sep 21;142(6):1501–1517. doi: 10.1083/jcb.142.6.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karpova T. S., Reck-Peterson S. L., Elkind N. B., Mooseker M. S., Novick P. J., Cooper J. A. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell. 2000 May;11(5):1727–1737. doi: 10.1091/mbc.11.5.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karpova T. S., Tatchell K., Cooper J. A. Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. J Cell Biol. 1995 Dec;131(6 Pt 1):1483–1493. doi: 10.1083/jcb.131.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kilmartin J. V., Adams A. E. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 1984 Mar;98(3):922–933. doi: 10.1083/jcb.98.3.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lappalainen P., Drubin D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature. 1997 Jul 3;388(6637):78–82. doi: 10.1038/40418. [DOI] [PubMed] [Google Scholar]
  11. Longtine M. S., DeMarini D. J., Valencik M. L., Al-Awar O. S., Fares H., De Virgilio C., Pringle J. R. The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol. 1996 Feb;8(1):106–119. doi: 10.1016/s0955-0674(96)80054-8. [DOI] [PubMed] [Google Scholar]
  12. McGrath J. L., Tardy Y., Dewey C. F., Jr, Meister J. J., Hartwig J. H. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J. 1998 Oct;75(4):2070–2078. doi: 10.1016/S0006-3495(98)77649-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mulholland J., Preuss D., Moon A., Wong A., Drubin D., Botstein D. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol. 1994 Apr;125(2):381–391. doi: 10.1083/jcb.125.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pelham R. J., Jr, Chang F. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nat Cell Biol. 2001 Mar;3(3):235–244. doi: 10.1038/35060020. [DOI] [PubMed] [Google Scholar]
  15. Pruyne D. W., Schott D. H., Bretscher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol. 1998 Dec 28;143(7):1931–1945. doi: 10.1083/jcb.143.7.1931. [DOI] [PubMed] [Google Scholar]
  16. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rossanese O. W., Reinke C. A., Bevis B. J., Hammond A. T., Sears I. B., O'Connor J., Glick B. S. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol. 2001 Apr 2;153(1):47–62. doi: 10.1083/jcb.153.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schafer D. A., Welch M. D., Machesky L. M., Bridgman P. C., Meyer S. M., Cooper J. A. Visualization and molecular analysis of actin assembly in living cells. J Cell Biol. 1998 Dec 28;143(7):1919–1930. doi: 10.1083/jcb.143.7.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schott D., Ho J., Pruyne D., Bretscher A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol. 1999 Nov 15;147(4):791–808. doi: 10.1083/jcb.147.4.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith M. G., Swamy S. R., Pon L. A. The life cycle of actin patches in mating yeast. J Cell Sci. 2001 Apr;114(Pt 8):1505–1513. doi: 10.1242/jcs.114.8.1505. [DOI] [PubMed] [Google Scholar]
  21. Waddle J. A., Karpova T. S., Waterston R. H., Cooper J. A. Movement of cortical actin patches in yeast. J Cell Biol. 1996 Mar;132(5):861–870. doi: 10.1083/jcb.132.5.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winter D., Podtelejnikov A. V., Mann M., Li R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol. 1997 Jul 1;7(7):519–529. doi: 10.1016/s0960-9822(06)00223-5. [DOI] [PubMed] [Google Scholar]
  23. Young Michael E., Karpova Tatiana S., Brügger Britta, Moschenross Darcy M., Wang Georgeann K., Schneiter Roger, Wieland Felix T., Cooper John A. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol Cell Biol. 2002 Feb;22(3):927–934. doi: 10.1128/MCB.22.3.927-934.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES