Abstract
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed.
Full Text
The Full Text of this article is available as a PDF (238.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben R. N. Antifreeze glycoproteins--preventing the growth of ice. Chembiochem. 2001 Mar 2;2(3):161–166. doi: 10.1002/1439-7633(20010302)2:3<161::AID-CBIC161>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Burcham T. S., Osuga D. T., Yeh Y., Feeney R. E. A kinetic description of antifreeze glycoprotein activity. J Biol Chem. 1986 May 15;261(14):6390–6397. [PubMed] [Google Scholar]
- Bush C. A., Feeney R. E., Osuga D. T., Ralapati S., Yeh Y. Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data. Int J Pept Protein Res. 1981 Jan;17(1):125–129. doi: 10.1111/j.1399-3011.1981.tb01975.x. [DOI] [PubMed] [Google Scholar]
- Bush C. A., Ralapati S., Matson G. M., Yamasaki R. B., Osuga D. T., Yeh Y., Feeney R. E. Conformation of the antifreeze glycoprotein of polar fish. Arch Biochem Biophys. 1984 Aug 1;232(2):624–631. doi: 10.1016/0003-9861(84)90582-4. [DOI] [PubMed] [Google Scholar]
- Chao H., Houston M. E., Jr, Hodges R. S., Kay C. M., Sykes B. D., Loewen M. C., Davies P. L., Sönnichsen F. D. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry. 1997 Dec 2;36(48):14652–14660. doi: 10.1021/bi970817d. [DOI] [PubMed] [Google Scholar]
- DeLuca C. I., Chao H., Sönnichsen F. D., Sykes B. D., Davies P. L. Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophys J. 1996 Nov;71(5):2346–2355. doi: 10.1016/S0006-3495(96)79476-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVries A. L. Glycoproteins as biological antifreeze agents in antarctic fishes. Science. 1971 Jun 11;172(3988):1152–1155. doi: 10.1126/science.172.3988.1152. [DOI] [PubMed] [Google Scholar]
- DeVries A. L., Komatsu S. K., Feeney R. E. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 1970 Jun 10;245(11):2901–2908. [PubMed] [Google Scholar]
- DeVries A. L., Vandenheede J., Feeney R. E. Primary structure of freezing point-depressing glycoproteins. J Biol Chem. 1971 Jan 25;246(2):305–308. [PubMed] [Google Scholar]
- Demchuk E., Bashford D., Gippert G. P., Case D. A. Thermodynamics of a reverse turn motif. Solvent effects and side-chain packing. J Mol Biol. 1997 Jul 11;270(2):305–317. doi: 10.1006/jmbi.1997.1103. [DOI] [PubMed] [Google Scholar]
- Deng G., Andrews D. W., Laursen R. A. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 1997 Jan 27;402(1):17–20. doi: 10.1016/s0014-5793(96)01466-4. [DOI] [PubMed] [Google Scholar]
- Duman J. G., DeVries A. L. Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish. Cryobiology. 1972 Oct;9(5):469–472. doi: 10.1016/0011-2240(72)90166-6. [DOI] [PubMed] [Google Scholar]
- Duman J. G., de Vries A. L. Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol B. 1976;54(3):375–380. doi: 10.1016/0305-0491(76)90260-1. [DOI] [PubMed] [Google Scholar]
- Feeney R. E. A biological antifreeze. Am Sci. 1974 Nov-Dec;62(6):712–719. [PubMed] [Google Scholar]
- Filira F., Biondi L., Scolaro B., Foffani M. T., Mammi S., Peggion E., Rocchi R. Solid phase synthesis and conformation of sequential glycosylated polytripeptide sequences related to antifreeze glycoproteins. Int J Biol Macromol. 1990 Feb;12(1):41–49. doi: 10.1016/0141-8130(90)90080-t. [DOI] [PubMed] [Google Scholar]
- Fletcher G. L., Hew C. L., Davies P. L. Antifreeze proteins of teleost fishes. Annu Rev Physiol. 2001;63:359–390. doi: 10.1146/annurev.physiol.63.1.359. [DOI] [PubMed] [Google Scholar]
- Harding M. M., Ward L. G., Haymet A. D. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem. 1999 Sep;264(3):653–665. doi: 10.1046/j.1432-1327.1999.00617.x. [DOI] [PubMed] [Google Scholar]
- Haymet A. D., Ward L. G., Harding M. M. Hydrophobic analogues of the winter flounder 'antifreeze' protein. FEBS Lett. 2001 Mar 2;491(3):285–288. doi: 10.1016/s0014-5793(01)02213-x. [DOI] [PubMed] [Google Scholar]
- Haymet A. D., Ward L. G., Harding M. M., Knight C. A. Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis. FEBS Lett. 1998 Jul 3;430(3):301–306. doi: 10.1016/s0014-5793(98)00652-8. [DOI] [PubMed] [Google Scholar]
- Hew C. L., Joshi S., Wang N. C., Kao M. H., Ananthanarayanan V. S. Structures of shorthorn sculpin antifreeze polypeptides. Eur J Biochem. 1985 Aug 15;151(1):167–172. doi: 10.1111/j.1432-1033.1985.tb09081.x. [DOI] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Jia Z., DeLuca C. I., Davies P. L. Crystallization and preliminary X-ray crystallographic studies on Type III antifreeze protein. Protein Sci. 1995 Jun;4(6):1236–1238. doi: 10.1002/pro.5560040621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000 Dec;33(12):889–897. doi: 10.1021/ar000033j. [DOI] [PubMed] [Google Scholar]
- Komatsu S., DeVries A. L., Feeney R. E. Studies of the structure of freezing point-depressing glycoproteins from an Antarctic fish. J Biol Chem. 1970 Jun 10;245(11):2909–2913. [PubMed] [Google Scholar]
- Lane A. N., Hays L. M., Feeney R. E., Crowe L. M., Crowe J. H. Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod. Protein Sci. 1998 Jul;7(7):1555–1563. doi: 10.1002/pro.5560070709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane A. N., Hays L. M., Tsvetkova N., Feeney R. E., Crowe L. M., Crowe J. H. Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish. Biophys J. 2000 Jun;78(6):3195–3207. doi: 10.1016/S0006-3495(00)76856-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. R., Baker D., Kollman P. A. 2.1 and 1.8 A average C(alpha) RMSD structure predictions on two small proteins, HP-36 and s15. J Am Chem Soc. 2001 Feb 14;123(6):1040–1046. doi: 10.1021/ja003150i. [DOI] [PubMed] [Google Scholar]
- Lee M. R., Duan Y., Kollman P. A. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins. 2000 Jun 1;39(4):309–316. [PubMed] [Google Scholar]
- Liou Y. C., Tocilj A., Davies P. L., Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000 Jul 20;406(6793):322–324. doi: 10.1038/35018604. [DOI] [PubMed] [Google Scholar]
- Mimura Y., Yamamoto Y., Inoue Y., Chûjô R. N.m.r. study of interaction between sugar and peptide moieties in mucin-type model glycopeptides. Int J Biol Macromol. 1992 Oct;14(5):242–248. doi: 10.1016/s0141-8130(05)80036-4. [DOI] [PubMed] [Google Scholar]
- Mulvihill D. M., Geoghegan K. F., Yeh Y., DeRemer K., Osuga D. T., Ward F. C., Feeney R. E. Antifreeze glycoproteins from Polar fish. Effects of freezing conditions on cooperative function. J Biol Chem. 1980 Jan 25;255(2):659–662. [PubMed] [Google Scholar]
- Ng N. F., Hew C. L. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J Biol Chem. 1992 Aug 15;267(23):16069–16075. [PubMed] [Google Scholar]
- Ng N. F., Trinh K. Y., Hew C. L. Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. J Biol Chem. 1986 Nov 25;261(33):15690–15695. [PubMed] [Google Scholar]
- Rao B. N., Bush C. A. Comparison by 1H-nmr spectroscopy of the conformation of the 2600 dalton antifreeze glycopeptide of polar cod with that of the high molecular weight antifreeze glycoprotein. Biopolymers. 1987 Aug;26(8):1227–1244. doi: 10.1002/bip.360260803. [DOI] [PubMed] [Google Scholar]
- Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Sitkoff D., Lockhart D. J., Sharp K. A., Honig B. Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys J. 1994 Dec;67(6):2251–2260. doi: 10.1016/S0006-3495(94)80709-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slaughter D., Fletcher G. L., Ananthanarayanan V. S., Hew C. L. Antifreeze proteins from the sea raven, Hemitripterus americanus. Further evidence for diversity among fish polypeptide antifreezes. J Biol Chem. 1981 Feb 25;256(4):2022–2026. [PubMed] [Google Scholar]
- Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
- Sönnichsen F. D., DeLuca C. I., Davies P. L., Sykes B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 1996 Nov 15;4(11):1325–1337. doi: 10.1016/s0969-2126(96)00140-2. [DOI] [PubMed] [Google Scholar]
- Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Hitz B., Honig B. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding. J Mol Biol. 1996 Jun 21;259(4):873–882. doi: 10.1006/jmbi.1996.0364. [DOI] [PubMed] [Google Scholar]
- Yeh Yin, Feeney Robert E. Antifreeze Proteins: Structures and Mechanisms of Function. Chem Rev. 1996 Mar 28;96(2):601–618. doi: 10.1021/cr950260c. [DOI] [PubMed] [Google Scholar]