Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):194–205. doi: 10.1016/S0006-3495(02)75161-8

Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb(alpha)-vWF tether bond.

Teresa A Doggett 1, Gaurav Girdhar 1, Avril Lawshé 1, David W Schmidtke 1, Ian J Laurenzi 1, Scott L Diamond 1, Thomas G Diacovo 1
PMCID: PMC1302139  PMID: 12080112

Abstract

The ability of platelets to tether to and translocate on injured vascular endothelium relies on the interaction between the platelet glycoprotein receptor Ib alpha (GPIb(alpha)) and the A1 domain of von Willebrand factor (vWF-A1). To date, limited information exists on the kinetics that govern platelet interactions with vWF in hemodynamic flow. We now report that the GPIb(alpha)-vWF-A1 tether bond displays similar kinetic attributes as the selectins including: 1) the requirement for a critical level of hydrodynamic flow to initiate adhesion, 2) short-lived tethering events at sites of vascular injury in vivo, and 3) a fast intrinsic dissociation rate constant, k(0)(off) (3.45 +/- 0.37 s(-1)). Values for k(off), as determined by pause time analysis of transient capture/release events, were also found to vary exponentially (4.2 +/- 0.8 s(-1) to 7.3 +/- 0.4 s(-1)) as a function of the force applied to the bond (from 36 to 217 pN). The biological importance of rapid bond dissociation in platelet adhesion is demonstrated by kinetic characterization of the A1 domain mutation, I546V that is associated with type 2B von Willebrand disease (vWD), a bleeding disorder that is due to the spontaneous binding of plasma vWF to circulating platelets. This mutation resulted in a loss of the shear threshold phenomenon, a approximately sixfold reduction in k(off), but no significant alteration in the ability of the tether bond to resist shear-induced forces. Thus, flow dependent adhesion and rapid and force-dependent kinetic properties are the predominant features of the GPIb(alpha)-vWF-A1 tether bond that in part may explain the preferential binding of platelets to vWF at sites of vascular injury, the lack of spontaneous platelet aggregation in circulating blood, and a mechanism to limit thrombus formation.

Full Text

The Full Text of this article is available as a PDF (483.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  4. Bourgain R. H., Andries R., Braquet P., Deby C. The effect of inhibition of endothelial cell cyclooxygenase on arterial thrombosis. Prostaglandins. 1985 Dec;30(6):915–923. doi: 10.1016/0090-6980(85)90165-0. [DOI] [PubMed] [Google Scholar]
  5. Chang K. C., Tees D. F., Hammer D. A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11262–11267. doi: 10.1073/pnas.200240897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen S., Springer T. A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J Cell Biol. 1999 Jan 11;144(1):185–200. doi: 10.1083/jcb.144.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen S., Springer T. A. Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):950–955. doi: 10.1073/pnas.98.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coller B. S., Peerschke E. I., Scudder L. E., Sullivan C. A. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood. 1983 Jan;61(1):99–110. [PubMed] [Google Scholar]
  9. Cooney K. A., Ginsburg D. Comparative analysis of type 2b von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets. Blood. 1996 Mar 15;87(6):2322–2328. [PubMed] [Google Scholar]
  10. Coxon A., Rieu P., Barkalow F. J., Askari S., Sharpe A. H., von Andrian U. H., Arnaout M. A., Mayadas T. N. A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity. 1996 Dec;5(6):653–666. doi: 10.1016/s1074-7613(00)80278-2. [DOI] [PubMed] [Google Scholar]
  11. Cruz M. A., Diacovo T. G., Emsley J., Liddington R., Handin R. I. Mapping the glycoprotein Ib-binding site in the von willebrand factor A1 domain. J Biol Chem. 2000 Jun 23;275(25):19098–19105. doi: 10.1074/jbc.M002292200. [DOI] [PubMed] [Google Scholar]
  12. Diacovo T. G., Puri K. D., Warnock R. A., Springer T. A., von Andrian U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996 Jul 12;273(5272):252–255. doi: 10.1126/science.273.5272.252. [DOI] [PubMed] [Google Scholar]
  13. Dong J., Schade A. J., Romo G. M., Andrews R. K., Gao S., McIntire L. V., López J. A. Novel gain-of-function mutations of platelet glycoprotein IBalpha by valine mutagenesis in the Cys209-Cys248 disulfide loop. Functional analysis under statis and dynamic conditions. J Biol Chem. 2000 Sep 8;275(36):27663–27670. doi: 10.1074/jbc.M909952199. [DOI] [PubMed] [Google Scholar]
  14. Federici A. B., Mannucci P. M., Stabile F., Canciani M. T., Di Rocco N., Miyata S., Ware J., Ruggeri Z. M. A type 2b von Willebrand disease mutation (Ile546-->Val) associated with an unusual phenotype. Thromb Haemost. 1997 Sep;78(3):1132–1137. [PubMed] [Google Scholar]
  15. Finger E. B., Puri K. D., Alon R., Lawrence M. B., von Andrian U. H., Springer T. A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996 Jan 18;379(6562):266–269. doi: 10.1038/379266a0. [DOI] [PubMed] [Google Scholar]
  16. Ginsburg D., Sadler J. E. von Willebrand disease: a database of point mutations, insertions, and deletions. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1993 Feb 1;69(2):177–184. [PubMed] [Google Scholar]
  17. Immunochemical techniques. Part I: Hybridoma technology and monoclonal antibodies. Methods Enzymol. 1986;121:1–947. [PubMed] [Google Scholar]
  18. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karpatkin S., Pearlstein E., Ambrogio C., Coller B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988 Apr;81(4):1012–1019. doi: 10.1172/JCI113411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Labadia M. E., Jeanfavre D. D., Caviness G. O., Morelock M. M. Molecular regulation of the interaction between leukocyte function-associated antigen-1 and soluble ICAM-1 by divalent metal cations. J Immunol. 1998 Jul 15;161(2):836–842. [PubMed] [Google Scholar]
  21. Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
  22. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  23. López J. A. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis. 1994 Feb;5(1):97–119. [PubMed] [Google Scholar]
  24. Mehta P., Cummings R. D., McEver R. P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem. 1998 Dec 4;273(49):32506–32513. doi: 10.1074/jbc.273.49.32506. [DOI] [PubMed] [Google Scholar]
  25. Meyer D., Fressinaud E., Gaucher C., Lavergne J. M., Hilbert L., Ribba A. S., Jorieux S., Mazurier C. Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: from the patient to the gene. INSERM Network on Molecular Abnormalities in von Willebrand Disease. Thromb Haemost. 1997 Jul;78(1):451–456. [PubMed] [Google Scholar]
  26. Miller J. L., Castella A. Platelet-type von Willebrand's disease: characterization of a new bleeding disorder. Blood. 1982 Sep;60(3):790–794. [PubMed] [Google Scholar]
  27. Miller J. L. Platelet-type von Willebrand disease. Thromb Haemost. 1996 Jun;75(6):865–869. [PubMed] [Google Scholar]
  28. Miura S., Li C. Q., Cao Z., Wang H., Wardell M. R., Sadler J. E. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibalpha-(1-289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J Biol Chem. 2000 Mar 17;275(11):7539–7546. doi: 10.1074/jbc.275.11.7539. [DOI] [PubMed] [Google Scholar]
  29. Miyata S., Ruggeri Z. M. Distinct structural attributes regulating von Willebrand factor A1 domain interaction with platelet glycoprotein Ibalpha under flow. J Biol Chem. 1999 Mar 5;274(10):6586–6593. doi: 10.1074/jbc.274.10.6586. [DOI] [PubMed] [Google Scholar]
  30. Nicholson M. W., Barclay A. N., Singer M. S., Rosen S. D., van der Merwe P. A. Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J Biol Chem. 1998 Jan 9;273(2):763–770. doi: 10.1074/jbc.273.2.763. [DOI] [PubMed] [Google Scholar]
  31. Pierres A., Benoliel A. M., Bongrand P. Measuring the lifetime of bonds made between surface-linked molecules. J Biol Chem. 1995 Nov 3;270(44):26586–26592. doi: 10.1074/jbc.270.44.26586. [DOI] [PubMed] [Google Scholar]
  32. Puri K. D., Chen S., Springer T. A. Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature. 1998 Apr 30;392(6679):930–933. doi: 10.1038/31954. [DOI] [PubMed] [Google Scholar]
  33. Ramachandran V., Yago T., Epperson T. K., Kobzdej M. M., Nollert M. U., Cummings R. D., Zhu C., McEver R. P. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc Natl Acad Sci U S A. 2001 Jul 31;98(18):10166–10171. doi: 10.1073/pnas.171248098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruggeri Z. M., Pareti F. I., Mannucci P. M., Ciavarella N., Zimmerman T. S. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand's disease. N Engl J Med. 1980 May 8;302(19):1047–1051. doi: 10.1056/NEJM198005083021902. [DOI] [PubMed] [Google Scholar]
  35. Sakariassen K. S., Bolhuis P. A., Sixma J. J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature. 1979 Jun 14;279(5714):636–638. doi: 10.1038/279636a0. [DOI] [PubMed] [Google Scholar]
  36. Sambrano G. R., Weiss E. J., Zheng Y. W., Huang W., Coughlin S. R. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature. 2001 Sep 6;413(6851):74–78. doi: 10.1038/35092573. [DOI] [PubMed] [Google Scholar]
  37. Savage B., Saldívar E., Ruggeri Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996 Jan 26;84(2):289–297. doi: 10.1016/s0092-8674(00)80983-6. [DOI] [PubMed] [Google Scholar]
  38. Schmidtke D. W., Diamond S. L. Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J Cell Biol. 2000 May 1;149(3):719–730. doi: 10.1083/jcb.149.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shao J. Y., Ting-Beall H. P., Hochmuth R. M. Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797–6802. doi: 10.1073/pnas.95.12.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys J. 1996 Aug;71(2):1102–1114. doi: 10.1016/S0006-3495(96)79312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Turitto V. T., Weiss H. J., Baumgartner H. R. The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res. 1980 May;19(3):352–365. doi: 10.1016/0026-2862(80)90054-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES