Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):427–432. doi: 10.1016/S0006-3495(02)75180-1

Tyr-199 and charged residues of pharaonis Phoborhodopsin are important for the interaction with its transducer.

Yuki Sudo 1, Masayuki Iwamoto 1, Kazumi Shimono 1, Naoki Kamo 1
PMCID: PMC1302158  PMID: 12080131

Abstract

pharaonis Phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a retinal protein in Natronobacterium pharaonis and is a receptor of negative phototaxis. It forms a complex with its transducer, pHtrII, in membranes and transmits light signals by protein-protein interaction. Tyr-199 is conserved completely in phoborhodopsins among a variety of archaea, but it is replaced by Val (for bacteriorhodopsin) and Phe (for sensory rhodopsin I). Previously, we (Sudo, Y., M. Iwamoto, K. Shimono, and N. Kamo, submitted for publication) showed that analysis of flash-photolysis data of a complex between D75N and the truncated pHtrII (t-Htr) give a good estimate of the dissociation constant K(D) in the dark. To investigate the importance of Tyr-199, K(D) of double mutants of D75N/Y199F or D75N/Y199V with t-Htr was estimated by flash-photolysis and was approximately 10-fold larger than that of D75N, showing the significant contribution of Tyr-199 to binding. The K(D) of the D75N/t-Htr complex increased with decreasing pH, and the data fitted well with the Henderson-Hasselbach equation with a single pK(a) of 3.86 +/- 0.02. This suggests that certain deprotonated carboxyls at the surface of the transducer (possibly Asp-102, Asp-104, and Asp-106) are needed for the binding.

Full Text

The Full Text of this article is available as a PDF (221.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieszke J. A., Spudich E. N., Scott K. L., Borkovich K. A., Spudich J. L. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry. 1999 Oct 26;38(43):14138–14145. doi: 10.1021/bi9916170. [DOI] [PubMed] [Google Scholar]
  2. Brown L. S., Dioumaev A. K., Lanyi J. K., Spudich E. N., Spudich J. L. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem. 2001 Jul 2;276(35):32495–32505. doi: 10.1074/jbc.M102652200. [DOI] [PubMed] [Google Scholar]
  3. Béjà O., Aravind L., Koonin E. V., Suzuki M. T., Hadd A., Nguyen L. P., Jovanovich S. B., Gates C. M., Feldman R. A., Spudich J. L. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000 Sep 15;289(5486):1902–1906. doi: 10.1126/science.289.5486.1902. [DOI] [PubMed] [Google Scholar]
  4. Haupts U., Tittor J., Oesterhelt D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct. 1999;28:367–399. doi: 10.1146/annurev.biophys.28.1.367. [DOI] [PubMed] [Google Scholar]
  5. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  6. Iwamoto M., Sudo Y., Shimono K., Kamo N. Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin. Biochim Biophys Acta. 2001 Sep 3;1514(1):152–158. doi: 10.1016/s0005-2736(01)00380-7. [DOI] [PubMed] [Google Scholar]
  7. Kamo N., Shimono K., Iwamoto M., Sudo Y. Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Mosc) 2001 Nov;66(11):1277–1282. doi: 10.1023/a:1013187403599. [DOI] [PubMed] [Google Scholar]
  8. Kandori H., Shimono K., Sudo Y., Iwamoto M., Shichida Y., Kamo N. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Biochemistry. 2001 Aug 7;40(31):9238–9246. doi: 10.1021/bi0103819. [DOI] [PubMed] [Google Scholar]
  9. Lanyi J. K., Luecke H. Bacteriorhodopsin. Curr Opin Struct Biol. 2001 Aug;11(4):415–419. doi: 10.1016/s0959-440x(00)00226-8. [DOI] [PubMed] [Google Scholar]
  10. Luecke H., Schobert B., Lanyi J. K., Spudich E. N., Spudich J. L. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science. 2001 Jul 12;293(5534):1499–1503. doi: 10.1126/science.1062977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oesterhelt D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol. 1998 Aug;8(4):489–500. doi: 10.1016/s0959-440x(98)80128-0. [DOI] [PubMed] [Google Scholar]
  12. Royant A., Nollert P., Edman K., Neutze R., Landau E. M., Pebay-Peyroula E., Navarro J. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10131–10136. doi: 10.1073/pnas.181203898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sasaki J., Spudich J. L. Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochim Biophys Acta. 2000 Aug 30;1460(1):230–239. doi: 10.1016/s0005-2728(00)00142-0. [DOI] [PubMed] [Google Scholar]
  14. Schmies G., Lüttenberg B., Chizhov I., Engelhard M., Becker A., Bamberg E. Sensory rhodopsin II from the haloalkaliphilic natronobacterium pharaonis: light-activated proton transfer reactions. Biophys J. 2000 Feb;78(2):967–976. doi: 10.1016/S0006-3495(00)76654-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seidel R., Scharf B., Gautel M., Kleine K., Oesterhelt D., Engelhard M. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3036–3040. doi: 10.1073/pnas.92.7.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shimono K., Ikeura Y., Sudo Y., Iwamoto M., Kamo N. Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochim Biophys Acta. 2001 Dec 1;1515(2):92–100. doi: 10.1016/s0005-2736(01)00394-7. [DOI] [PubMed] [Google Scholar]
  17. Shimono K., Iwamoto M., Sumi M., Kamo N. Effects of three characteristic amino acid residues of pharaonis phoborhodopsin on the absorption maximum. Photochem Photobiol. 2000 Jul;72(1):141–145. doi: 10.1562/0031-8655(2000)072<0141:eotcaa>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  18. Shimono K., Iwamoto M., Sumi M., Kamo N. Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett. 1997 Dec 22;420(1):54–56. doi: 10.1016/s0014-5793(97)01487-7. [DOI] [PubMed] [Google Scholar]
  19. Shimono K., Kitami M., Iwamoto M., Kamo N. Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophys Chem. 2000 Oct 30;87(2-3):225–230. doi: 10.1016/s0301-4622(00)00195-2. [DOI] [PubMed] [Google Scholar]
  20. Spudich E. N., Zhang W., Alam M., Spudich J. L. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4960–4965. doi: 10.1073/pnas.94.10.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sudo Y., Iwamoto M., Shimono K., Kamo N. Pharaonis phoborhodopsin binds to its cognate truncated transducer even in the presence of a detergent with a 1:1 stoichiometry. Photochem Photobiol. 2001 Sep;74(3):489–494. doi: 10.1562/0031-8655(2001)074<0489:ppbtic>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  23. Váró G. Analogies between halorhodopsin and bacteriorhodopsin. Biochim Biophys Acta. 2000 Aug 30;1460(1):220–229. doi: 10.1016/s0005-2728(00)00141-9. [DOI] [PubMed] [Google Scholar]
  24. Wegener A. A., Chizhov I., Engelhard M., Steinhoff H. J. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J Mol Biol. 2000 Aug 25;301(4):881–891. doi: 10.1006/jmbi.2000.4008. [DOI] [PubMed] [Google Scholar]
  25. Wegener A. A., Klare J. P., Engelhard M., Steinhoff H. J. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J. 2001 Oct 1;20(19):5312–5319. doi: 10.1093/emboj/20.19.5312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yang C. S., Spudich J. L. Light-induced structural changes occur in the transmembrane helices of the Natronobacterium pharaonis HtrII transducer. Biochemistry. 2001 Nov 27;40(47):14207–14214. doi: 10.1021/bi010985c. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES