Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):458–472. doi: 10.1016/S0006-3495(02)75182-5

The effect of core destabilization on the mechanical resistance of I27.

David J Brockwell 1, Godfrey S Beddard 1, John Clarkson 1, Rebecca C Zinober 1, Anthony W Blake 1, John Trinick 1, Peter D Olmsted 1, D Alastair Smith 1, Sheena E Radford 1
PMCID: PMC1302160  PMID: 12080133

Abstract

It is still unclear whether mechanical unfolding probes the same pathways as chemical denaturation. To address this point, we have constructed a concatamer of five mutant I27 domains (denoted (I27)(5)*) and used it for mechanical unfolding studies. This protein consists of four copies of the mutant C47S, C63S I27 and a single copy of C63S I27. These mutations severely destabilize I27 (DeltaDeltaG(UN) = 8.7 and 17.9 kJ mol(-1) for C63S I27 and C47S, C63S I27, respectively). Both mutations maintain the hydrogen bond network between the A' and G strands postulated to be the major region of mechanical resistance for I27. Measuring the speed dependence of the force required to unfold (I27)(5)* in triplicate using the atomic force microscope allowed a reliable assessment of the intrinsic unfolding rate constant of the protein to be obtained (2.0 x 10(-3) s(-1)). The rate constant of unfolding measured by chemical denaturation is over fivefold faster (1.1 x 10(-2) s(-1)), suggesting that these techniques probe different unfolding pathways. Also, by comparing the parameters obtained from the mechanical unfolding of a wild-type I27 concatamer with that of (I27)(5)*, we show that although the observed forces are considerably lower, core destabilization has little effect on determining the mechanical sensitivity of this domain.

Full Text

The Full Text of this article is available as a PDF (328.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barik S. Site-directed mutagenesis in vitro by megaprimer PCR. Methods Mol Biol. 1996;57:203–215. doi: 10.1385/0-89603-332-5:203. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  3. Best R. B., Li B., Steward A., Daggett V., Clarke J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J. 2001 Oct;81(4):2344–2356. doi: 10.1016/S0006-3495(01)75881-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  5. Carrion-Vazquez M., Marszalek P. E., Oberhauser A. F., Fernandez J. M. Atomic force microscopy captures length phenotypes in single proteins. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11288–11292. doi: 10.1073/pnas.96.20.11288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrion-Vazquez M., Oberhauser A. F., Fisher T. E., Marszalek P. E., Li H., Fernandez J. M. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol. 2000;74(1-2):63–91. doi: 10.1016/s0079-6107(00)00017-1. [DOI] [PubMed] [Google Scholar]
  7. Carrion-Vazquez M., Oberhauser A. F., Fowler S. B., Marszalek P. E., Broedel S. E., Clarke J., Fernandez J. M. Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694–3699. doi: 10.1073/pnas.96.7.3694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 1998;(111):1–16. doi: 10.1039/a809884k. [DOI] [PubMed] [Google Scholar]
  9. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferguson N., Capaldi A. P., James R., Kleanthous C., Radford S. E. Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9. J Mol Biol. 1999 Mar 12;286(5):1597–1608. doi: 10.1006/jmbi.1998.2548. [DOI] [PubMed] [Google Scholar]
  11. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  12. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE. How strong is a covalent bond? . Science. 1999 Mar 12;283(5408):1727–1730. doi: 10.1126/science.283.5408.1727. [DOI] [PubMed] [Google Scholar]
  13. Hamill S. J., Steward A., Clarke J. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J Mol Biol. 2000 Mar 17;297(1):165–178. doi: 10.1006/jmbi.2000.3517. [DOI] [PubMed] [Google Scholar]
  14. Improta S., Krueger J. K., Gautel M., Atkinson R. A., Lefèvre J. F., Moulton S., Trewhella J., Pastore A. The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. J Mol Biol. 1998 Dec 4;284(3):761–777. doi: 10.1006/jmbi.1998.2028. [DOI] [PubMed] [Google Scholar]
  15. Improta S., Politou A. S., Pastore A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure. 1996 Mar 15;4(3):323–337. doi: 10.1016/s0969-2126(96)00036-6. [DOI] [PubMed] [Google Scholar]
  16. Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
  17. Klimov D. K., Thirumalai D. Native topology determines force-induced unfolding pathways in globular proteins. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7254–7259. doi: 10.1073/pnas.97.13.7254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  19. Li H., Carrion-Vazquez M., Oberhauser A. F., Marszalek P. E., Fernandez J. M. Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol. 2000 Dec;7(12):1117–1120. doi: 10.1038/81964. [DOI] [PubMed] [Google Scholar]
  20. Li H., Oberhauser A. F., Fowler S. B., Clarke J., Fernandez J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6527–6531. doi: 10.1073/pnas.120048697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 1998 Aug;75(2):662–671. doi: 10.1016/S0006-3495(98)77556-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu H., Schulten K. Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins. 1999 Jun 1;35(4):453–463. [PubMed] [Google Scholar]
  23. Lu H., Schulten K. The key event in force-induced unfolding of Titin's immunoglobulin domains. Biophys J. 2000 Jul;79(1):51–65. doi: 10.1016/S0006-3495(00)76273-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marszalek P. E., Lu H., Li H., Carrion-Vazquez M., Oberhauser A. F., Schulten K., Fernandez J. M. Mechanical unfolding intermediates in titin modules. Nature. 1999 Nov 4;402(6757):100–103. doi: 10.1038/47083. [DOI] [PubMed] [Google Scholar]
  25. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  26. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  27. Mitsui K., Hara M., Ikai A. Mechanical unfolding of alpha2-macroglobulin molecules with atomic force microscope. FEBS Lett. 1996 Apr 29;385(1-2):29–33. doi: 10.1016/0014-5793(96)00319-5. [DOI] [PubMed] [Google Scholar]
  28. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oberhauser A. F., Marszalek P. E., Erickson H. P., Fernandez J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998 May 14;393(6681):181–185. doi: 10.1038/30270. [DOI] [PubMed] [Google Scholar]
  30. Oesterhelt F., Oesterhelt D., Pfeiffer M., Engel A., Gaub H. E., Müller D. J. Unfolding pathways of individual bacteriorhodopsins. Science. 2000 Apr 7;288(5463):143–146. doi: 10.1126/science.288.5463.143. [DOI] [PubMed] [Google Scholar]
  31. Paci E., Karplus M. Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6521–6526. doi: 10.1073/pnas.100124597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  33. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  34. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  35. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  36. Trinick J. Titin as a scaffold and spring. Cytoskeleton. Curr Biol. 1996 Mar 1;6(3):258–260. doi: 10.1016/s0960-9822(02)00472-4. [DOI] [PubMed] [Google Scholar]
  37. Tskhovrebova L., Trinick J., Sleep J. A., Simmons R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997 May 15;387(6630):308–312. doi: 10.1038/387308a0. [DOI] [PubMed] [Google Scholar]
  38. Wymer N., Buchanan L. V., Henderson D., Mehta N., Botting C. H., Pocivavsek L., Fierke C. A., Toone E. J., Naismith J. H. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure. 2001 Jan 10;9(1):1–9. doi: 10.1016/s0969-2126(00)00555-4. [DOI] [PubMed] [Google Scholar]
  39. Yang G., Cecconi C., Baase W. A., Vetter I. R., Breyer W. A., Haack J. A., Matthews B. W., Dahlquist F. W., Bustamante C. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139–144. doi: 10.1073/pnas.97.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES