Abstract
Networks of signaling pathways perform complex temporal decoding functions in diverse biological systems, including the synapse, development, and bacterial chemotaxis. This paper examines temporal filtering and tuning properties of synaptic signaling pathways as a possible substrate for emergent temporal decoding. A mass action kinetic model of 16 synaptic signaling pathways was used to dissect out the contribution of these pathways in linear cascades and when coupled to form a network. The model predicts two primary mechanisms of temporal tuning of pathways: a weighted summation of responses of pathways with different timings and the presence of biochemical feedback loop(s) with emergent dynamics. Regulatory inputs act differently on these two tuning mechanisms. In the first case, regulators act like a gain-control on pathways with different intrinsic tuning. In the case of feedback loops, the temporal properties of the loop itself are changed. These basic tuning mechanisms may underlie specialized temporal tuning functions in more complex signaling systems in biology.
Full Text
The Full Text of this article is available as a PDF (280.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott L. F., Nelson S. B. Synaptic plasticity: taming the beast. Nat Neurosci. 2000 Nov;3 (Suppl):1178–1183. doi: 10.1038/81453. [DOI] [PubMed] [Google Scholar]
- Asthagiri A. R., Lauffenburger D. A. Bioengineering models of cell signaling. Annu Rev Biomed Eng. 2000;2:31–53. doi: 10.1146/annurev.bioeng.2.1.31. [DOI] [PubMed] [Google Scholar]
- Baier G, Sahle S. Homogeneous and Spatio-temporal Chaos in Biochemical Reactions With Feedback Inhibition. J Theor Biol. 1998 Jul 21;193(2):233–242. doi: 10.1006/jtbi.1998.0695. [DOI] [PubMed] [Google Scholar]
- Barr D. S., Lambert N. A., Hoyt K. L., Moore S. D., Wilson W. A. Induction and reversal of long-term potentiation by low- and high-intensity theta pattern stimulation. J Neurosci. 1995 Jul;15(7 Pt 2):5402–5410. doi: 10.1523/JNEUROSCI.15-07-05402.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bear M. F. Mechanism for a sliding synaptic modification threshold. Neuron. 1995 Jul;15(1):1–4. doi: 10.1016/0896-6273(95)90056-x. [DOI] [PubMed] [Google Scholar]
- Bhalla U. S., Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999 Jan 15;283(5400):381–387. doi: 10.1126/science.283.5400.381. [DOI] [PubMed] [Google Scholar]
- Bhalla Upinder S., Iyengar Ravi. Robustness of the bistable behavior of a biological signaling feedback loop. Chaos. 2001 Mar;11(1):221–226. doi: 10.1063/1.1350440. [DOI] [PubMed] [Google Scholar]
- Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
- Bray D. Protein molecules as computational elements in living cells. Nature. 1995 Jul 27;376(6538):307–312. doi: 10.1038/376307a0. [DOI] [PubMed] [Google Scholar]
- Ermentrout G. B. The mathematics of biological oscillators. Methods Enzymol. 1994;240:198–216. doi: 10.1016/s0076-6879(94)40050-4. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Machleder E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895–898. doi: 10.1126/science.280.5365.895. [DOI] [PubMed] [Google Scholar]
- Fields R. D., Eshete F., Stevens B., Itoh K. Action potential-dependent regulation of gene expression: temporal specificity in ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J Neurosci. 1997 Oct 1;17(19):7252–7266. doi: 10.1523/JNEUROSCI.17-19-07252.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frey U., Morris R. G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 1998 May;21(5):181–188. doi: 10.1016/s0166-2236(97)01189-2. [DOI] [PubMed] [Google Scholar]
- Grover L. M., Teyler T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature. 1990 Oct 4;347(6292):477–479. doi: 10.1038/347477a0. [DOI] [PubMed] [Google Scholar]
- Hanson P. I., Meyer T., Stryer L., Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994 May;12(5):943–956. doi: 10.1016/0896-6273(94)90306-9. [DOI] [PubMed] [Google Scholar]
- Kholodenko B. N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000 Mar;267(6):1583–1588. doi: 10.1046/j.1432-1327.2000.01197.x. [DOI] [PubMed] [Google Scholar]
- Levchenko A., Bruck J., Sternberg P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5818–5823. doi: 10.1073/pnas.97.11.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574–9578. doi: 10.1073/pnas.86.23.9574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 1994 Oct;17(10):406–412. doi: 10.1016/0166-2236(94)90014-0. [DOI] [PubMed] [Google Scholar]
- Lu W., Man H., Ju W., Trimble W. S., MacDonald J. F., Wang Y. T. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001 Jan;29(1):243–254. doi: 10.1016/s0896-6273(01)00194-5. [DOI] [PubMed] [Google Scholar]
- Manson M. D., Cantwell B. J. Model is as model does. Nat Cell Biol. 2000 Nov;2(11):E199–E201. doi: 10.1038/35041118. [DOI] [PubMed] [Google Scholar]
- Markram H., Lübke J., Frotscher M., Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997 Jan 10;275(5297):213–215. doi: 10.1126/science.275.5297.213. [DOI] [PubMed] [Google Scholar]
- Meyer T., Hanson P. I., Stryer L., Schulman H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992 May 22;256(5060):1199–1202. doi: 10.1126/science.256.5060.1199. [DOI] [PubMed] [Google Scholar]
- Ngo L. G., Roussel M. R. A new class of biochemical oscillator models based on competitive binding. Eur J Biochem. 1997 Apr 1;245(1):182–190. doi: 10.1111/j.1432-1033.1997.00182.x. [DOI] [PubMed] [Google Scholar]
- Nguyen P. V., Duffy S. N., Young J. Z. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol. 2000 Nov;84(5):2484–2493. doi: 10.1152/jn.2000.84.5.2484. [DOI] [PubMed] [Google Scholar]
- Roberson E. D., Sweatt J. D. A biochemical blueprint for long-term memory. Learn Mem. 1999 Jul-Aug;6(4):381–388. [PMC free article] [PubMed] [Google Scholar]
- Scheper T. O., Klinkenberg D., van Pelt J., Pennartz C. A model of molecular circadian clocks: multiple mechanisms for phase shifting and a requirement for strong nonlinear interactions. J Biol Rhythms. 1999 Jun;14(3):213–220. doi: 10.1177/074873099129000623. [DOI] [PubMed] [Google Scholar]
- Sejnowski T. J. The book of Hebb. Neuron. 1999 Dec;24(4):773–776. doi: 10.1016/s0896-6273(00)81025-9. [DOI] [PubMed] [Google Scholar]
- Soderling T. R., Derkach V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000 Feb;23(2):75–80. doi: 10.1016/s0166-2236(99)01490-3. [DOI] [PubMed] [Google Scholar]
- Stanton P. K. LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus. 1996;6(1):35–42. doi: 10.1002/(SICI)1098-1063(1996)6:1<35::AID-HIPO7>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Svoboda K., Tank D. W., Denk W. Direct measurement of coupling between dendritic spines and shafts. Science. 1996 May 3;272(5262):716–719. doi: 10.1126/science.272.5262.716. [DOI] [PubMed] [Google Scholar]
- Tang Y., Stephenson J. L., Othmer H. G. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J. 1996 Jan;70(1):246–263. doi: 10.1016/S0006-3495(96)79567-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thron C. D. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene. 1997 Jul 17;15(3):317–325. doi: 10.1038/sj.onc.1201190. [DOI] [PubMed] [Google Scholar]
- Thron C. D. Mathematical analysis of binary activation of a cell cycle kinase which down-regulates its own inhibitor. Biophys Chem. 1999 Jun 7;79(2):95–106. doi: 10.1016/s0301-4622(99)00041-1. [DOI] [PubMed] [Google Scholar]
- Winder D. G., Martin K. C., Muzzio I. A., Rohrer D., Chruscinski A., Kobilka B., Kandel E. R. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron. 1999 Nov;24(3):715–726. doi: 10.1016/s0896-6273(00)81124-1. [DOI] [PubMed] [Google Scholar]
- Wu G. Y., Deisseroth K., Tsien R. W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2808–2813. doi: 10.1073/pnas.051634198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G. Y., Deisseroth K., Tsien R. W. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci. 2001 Feb;4(2):151–158. doi: 10.1038/83976. [DOI] [PubMed] [Google Scholar]
