Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):1106–1118. doi: 10.1016/S0006-3495(02)75234-X

Dimensions of plectonemically supercoiled DNA.

Svetlana S Zakharova 1, Wim Jesse 1, Claude Backendorf 1, Stefan U Egelhaaf 1, Alain Lapp 1, Johan R C van der Maarel 1
PMCID: PMC1302212  PMID: 12124290

Abstract

With a view to determine the configuration and regularity of plectonemically supercoiled DNA, we have measured the small angle neutron scattering from pUC18 plasmid in saline solutions. Furthermore, we have derived the mathematical expression for the single chain scattering function (form factor) of a superhelical structure, including the longitudinal and transverse interference over the plectonemic pitch and radius, respectively. It was found that an interwound configuration describes the data well, provided interactions among supercoils are accounted for in the second virial approximation. The opening angle was observed to be relatively constant and close to 58 degrees, but it was necessary to include a significant distribution in radius and pitch. For diluted supercoils with vanishing mutual interaction, the derived structural results agree with independent measurements, including the distribution in linking number deficit as determined by gel electrophoresis. With increasing plasmid concentration, prior and covering the transition to the liquid-crystalline phase, the radius and pitch are seen to decrease significantly. The latter observation shows that compaction of negatively supercoiled DNA by confinement results in a decrease in writhing number at the cost of a positive twist exerted on the DNA duplex. It is our conjecture that the free energy associated with this excess twist is of paramount importance in controlling the critical boundaries pertaining to the transition to the anisotropic, liquid-crystalline phase.

Full Text

The Full Text of this article is available as a PDF (198.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backendorf C., Olsthoorn R., van de Putte P. Superhelical stress restrained in plasmid DNA during repair synthesis initiated by the UvrA, B and C proteins in vitro. Nucleic Acids Res. 1989 Dec 25;17(24):10337–10351. doi: 10.1093/nar/17.24.10337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E. H., Bates A. D. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J Mol Biol. 1994 Jan 21;235(3):825–847. doi: 10.1006/jmbi.1994.1042. [DOI] [PubMed] [Google Scholar]
  3. Boles T. C., White J. H., Cozzarelli N. R. Structure of plectonemically supercoiled DNA. J Mol Biol. 1990 Jun 20;213(4):931–951. doi: 10.1016/S0022-2836(05)80272-4. [DOI] [PubMed] [Google Scholar]
  4. Brady G. W., Fein D. B., Lambertson H., Grassian V., Foos D., Benham C. J. X-ray scattering from the superhelix in circular DNA. Proc Natl Acad Sci U S A. 1983 Feb;80(3):741–744. doi: 10.1073/pnas.80.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady G. W., Satkowski M., Foos D., Benham C. J. Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution. J Mol Biol. 1987 May 5;195(1):185–191. doi: 10.1016/0022-2836(87)90335-4. [DOI] [PubMed] [Google Scholar]
  6. Cherny D. I., Jovin T. M. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol. 2001 Oct 19;313(2):295–307. doi: 10.1006/jmbi.2001.5031. [DOI] [PubMed] [Google Scholar]
  7. Fujimoto Bryant S., Schurr J. Michael. Monte Carlo simulations of supercoiled DNAs confined to a plane. Biophys J. 2002 Feb;82(2):944–962. doi: 10.1016/S0006-3495(02)75455-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W., Schurr J. M. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J Mol Biol. 1996 Sep 20;262(2):105–128. doi: 10.1006/jmbi.1996.0502. [DOI] [PubMed] [Google Scholar]
  9. Hammermann M., Brun N., Klenin K. V., May R., Tóth K., Langowski J. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations. Biophys J. 1998 Dec;75(6):3057–3063. doi: 10.1016/S0006-3495(98)77746-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klenin K., Merlitz H., Langowski J. A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J. 1998 Feb;74(2 Pt 1):780–788. doi: 10.1016/S0006-3495(98)74003-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marko JF, Siggia ED. Statistical mechanics of supercoiled DNA. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2912–2938. doi: 10.1103/physreve.52.2912. [DOI] [PubMed] [Google Scholar]
  13. Prazeres D. M., Schluep T., Cooney C. Preparative purification of supercoiled plasmid DNA using anion-exchange chromatography. J Chromatogr A. 1998 May 8;806(1):31–45. doi: 10.1016/s0021-9673(97)01254-5. [DOI] [PubMed] [Google Scholar]
  14. Reich Z., Wachtel E. J., Minsky A. Liquid-crystalline mesophases of plasmid DNA in bacteria. Science. 1994 Jun 3;264(5164):1460–1463. doi: 10.1126/science.8197460. [DOI] [PubMed] [Google Scholar]
  15. Rippe K., Mücke N., Langowski J. Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in aqueous solution. Nucleic Acids Res. 1997 May 1;25(9):1736–1744. doi: 10.1093/nar/25.9.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J Mol Biol. 1997 Mar 28;267(2):299–311. doi: 10.1006/jmbi.1996.0876. [DOI] [PubMed] [Google Scholar]
  17. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J Mol Biol. 1997 Mar 28;267(2):312–323. doi: 10.1006/jmbi.1996.0877. [DOI] [PubMed] [Google Scholar]
  18. Stigter D. Interactions of highly charged colloidal cylinders with applications to double-stranded. Biopolymers. 1977 Jul;16(7):1435–1448. doi: 10.1002/bip.1977.360160705. [DOI] [PubMed] [Google Scholar]
  19. Strick T. R., Allemand J. F., Bensimon D., Croquette V. Behavior of supercoiled DNA. Biophys J. 1998 Apr;74(4):2016–2028. doi: 10.1016/S0006-3495(98)77908-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sun N. E., Shen B. H., Zhou J. M., Yuan J., Xu X. X., Zhu D. X., Han K. K. An efficient method for large-scale isolation of plasmid DNAs by heat-alkali co-denaturation. DNA Cell Biol. 1994 Jan;13(1):83–86. doi: 10.1089/dna.1994.13.83. [DOI] [PubMed] [Google Scholar]
  21. Torbet J., DiCapua E. Supercoiled DNA is interwound in liquid crystalline solutions. EMBO J. 1989 Dec 20;8(13):4351–4356. doi: 10.1002/j.1460-2075.1989.tb08622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ubbink J., Odijk T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys J. 1999 May;76(5):2502–2519. doi: 10.1016/S0006-3495(99)77405-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yethiraj A, Shew CY. Structure of Polyelectrolyte Solutions. Phys Rev Lett. 1996 Oct 28;77(18):3937–3940. doi: 10.1103/PhysRevLett.77.3937. [DOI] [PubMed] [Google Scholar]
  24. van Workum M., van Dooren S. J., Oldenburg N., Molenaar D., Jensen P. R., Snoep J. L., Westerhoff H. V. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol. 1996 Apr;20(2):351–360. doi: 10.1111/j.1365-2958.1996.tb02622.x. [DOI] [PubMed] [Google Scholar]
  25. van der Maarel J. R. Effect of spatial inhomogeneity in dielectric permittivity on DNA double layer formation. Biophys J. 1999 May;76(5):2673–2678. doi: 10.1016/S0006-3495(99)77419-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES