Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):1119–1129. doi: 10.1016/S0006-3495(02)75235-1

Liquid crystal formation in supercoiled DNA solutions.

Svetlana S Zakharova 1, Wim Jesse 1, Claude Backendorf 1, Johan R C van der Maarel 1
PMCID: PMC1302213  PMID: 12124291

Abstract

The critical concentrations pertaining to the liquid crystal formation of pUC18 plasmid in saline solutions were obtained from (31)P nuclear magnetic resonance, polarized light microscopy, and phase equilibrium experiments. The transition is strongly first order with a broad gap between the isotropic and anisotropic phase. The critical boundaries are strongly and reversibly dependent on temperature and weakly dependent on ionic strength. With polarized light microscopy on magnetically oriented samples, the liquid crystalline phase is assigned cholesteric with a pitch on the order of 4 microm. Preliminary results show that at higher concentrations a true crystal is formed. The isotropic-cholesteric transition is interpreted with lyotropic liquid crystal theory including the effects of charge, orientation entropy, and excluded volume effects. It was found that the molecular free energy associated with the topology of the superhelix is of paramount importance in controlling the width of the phase gap. The theoretical results compare favorably with the critical boundary pertaining to the disappearance of the isotropic phase, but they fail to predict the low concentration at which the anisotropic phase first appears.

Full Text

The Full Text of this article is available as a PDF (418.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backendorf C., Olsthoorn R., van de Putte P. Superhelical stress restrained in plasmid DNA during repair synthesis initiated by the UvrA, B and C proteins in vitro. Nucleic Acids Res. 1989 Dec 25;17(24):10337–10351. doi: 10.1093/nar/17.24.10337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E. H., Bates A. D. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J Mol Biol. 1994 Jan 21;235(3):825–847. doi: 10.1006/jmbi.1994.1042. [DOI] [PubMed] [Google Scholar]
  3. Brandes R., Kearns D. R. Magnetic ordering of DNA liquid crystals. Biochemistry. 1986 Oct 7;25(20):5890–5895. doi: 10.1021/bi00368a008. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. L., Parsegian V. A. A physical method for deriving the electrostatic interaction between rod-like polyions at all mutual angles. Biophys J. 1974 Apr;14(4):327–334. doi: 10.1016/S0006-3495(74)85919-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherny D. I., Jovin T. M. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol. 2001 Oct 19;313(2):295–307. doi: 10.1006/jmbi.2001.5031. [DOI] [PubMed] [Google Scholar]
  6. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W., Schurr J. M. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J Mol Biol. 1996 Sep 20;262(2):105–128. doi: 10.1006/jmbi.1996.0502. [DOI] [PubMed] [Google Scholar]
  8. Hammermann M., Brun N., Klenin K. V., May R., Tóth K., Langowski J. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations. Biophys J. 1998 Dec;75(6):3057–3063. doi: 10.1016/S0006-3495(98)77746-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kassapidou K., Jesse W., van Dijk J. A., van der Maarel J. R. Liquid crystal formation in DNA fragment solutions. Biopolymers. 1998 Jul;46(1):31–37. doi: 10.1002/(SICI)1097-0282(199807)46:1<31::AID-BIP3>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. Klenin K., Merlitz H., Langowski J. A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J. 1998 Feb;74(2 Pt 1):780–788. doi: 10.1016/S0006-3495(98)74003-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marko JF, Siggia ED. Statistical mechanics of supercoiled DNA. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2912–2938. doi: 10.1103/physreve.52.2912. [DOI] [PubMed] [Google Scholar]
  13. Merchant K., Rill R. L. DNA length and concentration dependencies of anisotropic phase transitions of DNA solutions. Biophys J. 1997 Dec;73(6):3154–3163. doi: 10.1016/S0006-3495(97)78341-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reich Z., Wachtel E. J., Minsky A. Liquid-crystalline mesophases of plasmid DNA in bacteria. Science. 1994 Jun 3;264(5164):1460–1463. doi: 10.1126/science.8197460. [DOI] [PubMed] [Google Scholar]
  15. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J Mol Biol. 1997 Mar 28;267(2):299–311. doi: 10.1006/jmbi.1996.0876. [DOI] [PubMed] [Google Scholar]
  16. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J Mol Biol. 1997 Mar 28;267(2):312–323. doi: 10.1006/jmbi.1996.0877. [DOI] [PubMed] [Google Scholar]
  17. Shindo H., Wooten J. B., Pheiffer B. H., Zimmerman S. B. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy. Biochemistry. 1980 Feb 5;19(3):518–526. doi: 10.1021/bi00544a020. [DOI] [PubMed] [Google Scholar]
  18. Strick T. R., Allemand J. F., Bensimon D., Croquette V. Behavior of supercoiled DNA. Biophys J. 1998 Apr;74(4):2016–2028. doi: 10.1016/S0006-3495(98)77908-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sun N. E., Shen B. H., Zhou J. M., Yuan J., Xu X. X., Zhu D. X., Han K. K. An efficient method for large-scale isolation of plasmid DNAs by heat-alkali co-denaturation. DNA Cell Biol. 1994 Jan;13(1):83–86. doi: 10.1089/dna.1994.13.83. [DOI] [PubMed] [Google Scholar]
  20. Torbet J., DiCapua E. Supercoiled DNA is interwound in liquid crystalline solutions. EMBO J. 1989 Dec 20;8(13):4351–4356. doi: 10.1002/j.1460-2075.1989.tb08622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ubbink J., Odijk T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys J. 1999 May;76(5):2502–2519. doi: 10.1016/S0006-3495(99)77405-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zakharova Svetlana S., Jesse Wim, Backendorf Claude, Egelhaaf Stefan U., Lapp Alain, van der Maarel Johan R. C. Dimensions of plectonemically supercoiled DNA. Biophys J. 2002 Aug;83(2):1106–1118. doi: 10.1016/S0006-3495(02)75234-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Workum M., van Dooren S. J., Oldenburg N., Molenaar D., Jensen P. R., Snoep J. L., Westerhoff H. V. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol. 1996 Apr;20(2):351–360. doi: 10.1111/j.1365-2958.1996.tb02622.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES