Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1479–1488. doi: 10.1016/S0006-3495(02)73918-0

Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR.

Patrick C A van der Wel 1, Erik Strandberg 1, J Antoinette Killian 1, Roger E Koeppe 2nd 1
PMCID: PMC1302246  PMID: 12202373

Abstract

We used solid-state deuterium NMR spectroscopy and an approach involving geometric analysis of labeled alanines (GALA method) to examine the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide in phosphatidylcholine (PC) bilayers. The 19-amino-acid peptide consists of an alternating leucine and alanine core, flanked by tryptophans that serve as interfacial anchors: acetyl-GWW(LA)(6)LWWA-ethanolamine (WALP19). A single deuterium-labeled alanine was introduced at different positions within the peptide. Peptides were incorporated in oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1(c)-) phosphatidylcholine. The NMR data fit well to a WALP19 orientation characterized by a distinctly nonzero tilt, approximately 4 degrees from the membrane normal, and rapid reorientation about the membrane normal in all three lipids. Although the orientation of WALP19 varies slightly in the different lipids, hydrophobic mismatch does not seem to be the dominant factor causing the tilt. We suggest rather that the peptide itself has an inherently preferred tilted orientation, possibly related to peptide surface characteristics or the disposition of tryptophan indole anchors relative to the lipids, the peptide backbone, and the membrane/water interface. Additionally, the data allow us to define more precisely the local alanine geometry in this membrane-spanning alpha-helix.

Full Text

The Full Text of this article is available as a PDF (428.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
  2. Cornell B. A., Separovic F., Baldassi A. J., Smith R. Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys J. 1988 Jan;53(1):67–76. doi: 10.1016/S0006-3495(88)83066-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Demmers J. A., Haverkamp J., Heck A. J., Koeppe R. E., 2nd, Killian J. A. Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3189–3194. doi: 10.1073/pnas.050444797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demmers J. A., van Duijn E., Haverkamp J., Greathouse D. V., Koeppe R. E., 2nd, Heck A. J., Killian J. A. Interfacial positioning and stability of transmembrane peptides in lipid bilayers studied by combining hydrogen/deuterium exchange and mass spectrometry. J Biol Chem. 2001 Jul 2;276(37):34501–34508. doi: 10.1074/jbc.M101401200. [DOI] [PubMed] [Google Scholar]
  5. Greathouse D. V., Goforth R. L., Crawford T., Van Der Wel P. C., Killian J. A. Optimized aminolysis conditions for cleavage of N-protected hydrophobic peptides from solid-phase resins. J Pept Res. 2001 Jun;57(6):519–527. doi: 10.1034/j.1399-3011.2001.00849.x. [DOI] [PubMed] [Google Scholar]
  6. Greathouse D. V., Koeppe R. E., 2nd, Providence L. L., Shobana S., Andersen O. S. Design and characterization of gramicidin channels. Methods Enzymol. 1999;294:525–550. doi: 10.1016/s0076-6879(99)94031-4. [DOI] [PubMed] [Google Scholar]
  7. Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane proteins. Biochim Biophys Acta. 1995 Feb 14;1228(1):1–27. doi: 10.1016/0005-2728(94)00161-w. [DOI] [PubMed] [Google Scholar]
  8. Harzer U., Bechinger B. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry. 2000 Oct 31;39(43):13106–13114. doi: 10.1021/bi000770n. [DOI] [PubMed] [Google Scholar]
  9. Hing A. W., Adams S. P., Silbert D. F., Norberg R. E. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers. Biochemistry. 1990 May 1;29(17):4144–4156. doi: 10.1021/bi00469a018. [DOI] [PubMed] [Google Scholar]
  10. Jones D. H., Barber K. R., VanDerLoo E. W., Grant C. W. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry. 1998 Nov 24;37(47):16780–16787. doi: 10.1021/bi981520y. [DOI] [PubMed] [Google Scholar]
  11. Jude A. R., Greathouse D. V., Leister M. C., Koeppe R. E., 2nd Steric interactions of valines 1, 5, and 7 in [valine 5, D-alanine 8] gramicidin A channels. Biophys J. 1999 Oct;77(4):1927–1935. doi: 10.1016/S0006-3495(99)77034-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  13. Killian J. A., Salemink I., de Planque M. R., Lindblom G., Koeppe R. E., 2nd, Greathouse D. V. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996 Jan 23;35(3):1037–1045. doi: 10.1021/bi9519258. [DOI] [PubMed] [Google Scholar]
  14. Killian J. A., Taylor M. J., Koeppe R. E., 2nd Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A 2H NMR study. Biochemistry. 1992 Nov 24;31(46):11283–11290. doi: 10.1021/bi00161a004. [DOI] [PubMed] [Google Scholar]
  15. Koeppe R. E., 2nd, Vogt T. C., Greathouse D. V., Killian J. A., de Kruijff B. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine. Biochemistry. 1996 Mar 19;35(11):3641–3648. doi: 10.1021/bi952046o. [DOI] [PubMed] [Google Scholar]
  16. Kukol A., Arkin I. T. Structure of the influenza C virus CM2 protein transmembrane domain obtained by site-specific infrared dichroism and global molecular dynamics searching. J Biol Chem. 2000 Feb 11;275(6):4225–4229. doi: 10.1074/jbc.275.6.4225. [DOI] [PubMed] [Google Scholar]
  17. Kukol A., Arkin I. T. vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J. 1999 Sep;77(3):1594–1601. doi: 10.1016/S0006-3495(99)77007-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee K. C., Cross T. A. Side-chain structure and dynamics at the lipid-protein interface: Val1 of the gramicidin A channel. Biophys J. 1994 May;66(5):1380–1387. doi: 10.1016/S0006-3495(94)80928-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee K. C., Huo S., Cross T. A. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995 Jan 24;34(3):857–867. doi: 10.1021/bi00003a020. [DOI] [PubMed] [Google Scholar]
  20. Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagle J. F., Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000 Nov 10;1469(3):159–195. doi: 10.1016/s0304-4157(00)00016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Persson S., Killian J. A., Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998 Sep;75(3):1365–1371. doi: 10.1016/s0006-3495(98)74054-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prosser R. S., Davis J. H., Dahlquist F. W., Lindorfer M. A. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry. 1991 May 14;30(19):4687–4696. doi: 10.1021/bi00233a008. [DOI] [PubMed] [Google Scholar]
  24. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  25. Torres J., Kukol A., Arkin I. T. Use of a single glycine residue to determine the tilt and orientation of a transmembrane helix. A new structural label for infrared spectroscopy. Biophys J. 2000 Dec;79(6):3139–3143. doi: 10.1016/S0006-3495(00)76547-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ulmschneider M. B., Sansom M. S. Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta. 2001 May 2;1512(1):1–14. doi: 10.1016/s0005-2736(01)00299-1. [DOI] [PubMed] [Google Scholar]
  27. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang J., Denny J., Tian C., Kim S., Mo Y., Kovacs F., Song Z., Nishimura K., Gan Z., Fu R. Imaging membrane protein helical wheels. J Magn Reson. 2000 May;144(1):162–167. doi: 10.1006/jmre.2000.2037. [DOI] [PubMed] [Google Scholar]
  29. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  30. Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]
  31. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Biochemistry. 2001 Jan 16;40(2):474–482. doi: 10.1021/bi002170u. [DOI] [PubMed] [Google Scholar]
  32. de Planque M. R., Goormaghtigh E., Greathouse D. V., Koeppe R. E., 2nd, Kruijtzer J. A., Liskamp R. M., de Kruijff B., Killian J. A. Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry. 2001 Apr 24;40(16):5000–5010. doi: 10.1021/bi000804r. [DOI] [PubMed] [Google Scholar]
  33. de Planque M. R., Greathouse D. V., Koeppe R. E., 2nd, Schäfer H., Marsh D., Killian J. A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry. 1998 Jun 30;37(26):9333–9345. doi: 10.1021/bi980233r. [DOI] [PubMed] [Google Scholar]
  34. de Planque M. R., Kruijtzer J. A., Liskamp R. M., Marsh D., Greathouse D. V., Koeppe R. E., 2nd, de Kruijff B., Killian J. A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem. 1999 Jul 23;274(30):20839–20846. doi: 10.1074/jbc.274.30.20839. [DOI] [PubMed] [Google Scholar]
  35. van der Wel P. C., Pott T., Morein S., Greathouse D. V., Koeppe R. E., 2nd, Killian J. A. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner. Biochemistry. 2000 Mar 21;39(11):3124–3133. doi: 10.1021/bi9922594. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES