Abstract
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ionization and conformation. The response of protein to charges is incorporated both in the protein dielectric constant (epsilon(prot)) of four and by explicit conformational changes. The pK(a) of 166 residues in 12 proteins was determined. The root mean square error is 0.83 pH units, and >90% have errors of <1 pH units whereas only 3% have errors >2 pH units. Similar results are found with crystal and solution structures, showing that the method's explicit conformational sampling reduces sensitivity to the initial structure. The outcome also changes little with protein dielectric constant (epsilon(prot) 4-20). Multiconformation continuum electrostatics titrations show coupling of conformational flexibility and changes in ionization state. Examples are provided where ionizable side chain position (protein G), Asn orientation (lysozyme), His tautomer distribution (RNase A), and phosphate ion binding (RNase A and H) change with pH. Disallowing these motions changes the calculated pK(a).
Full Text
The Full Text of this article is available as a PDF (323.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akke M., Forsén S., Chazin W. J. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo-->(Ca2+)II1-->(Ca2+)I,II2 binding pathway. J Mol Biol. 1995 Sep 8;252(1):102–121. doi: 10.1006/jmbi.1995.0478. [DOI] [PubMed] [Google Scholar]
- Alexov E. G., Gunner M. R. Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers. Biochemistry. 1999 Jun 29;38(26):8253–8270. doi: 10.1021/bi982700a. [DOI] [PubMed] [Google Scholar]
- Alexov E. G., Gunner M. R. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J. 1997 May;72(5):2075–2093. doi: 10.1016/S0006-3495(97)78851-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexov E., Miksovska J., Baciou L., Schiffer M., Hanson D. K., Sebban P., Gunner M. R. Modeling the effects of mutations on the free energy of the first electron transfer from QA- to QB in photosynthetic reaction centers. Biochemistry. 2000 May 23;39(20):5940–5952. doi: 10.1021/bi9929498. [DOI] [PubMed] [Google Scholar]
- Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
- Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
- Bartik K., Redfield C., Dobson C. M. Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR. Biophys J. 1994 Apr;66(4):1180–1184. doi: 10.1016/S0006-3495(94)80900-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
- Berndt K. D., Güntert P., Orbons L. P., Wüthrich K. Determination of a high-quality nuclear magnetic resonance solution structure of the bovine pancreatic trypsin inhibitor and comparison with three crystal structures. J Mol Biol. 1992 Oct 5;227(3):757–775. doi: 10.1016/0022-2836(92)90222-6. [DOI] [PubMed] [Google Scholar]
- Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5804–5808. doi: 10.1073/pnas.88.13.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bode W., Wei A. Z., Huber R., Meyer E., Travis J., Neumann S. X-ray crystal structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor. EMBO J. 1986 Oct;5(10):2453–2458. doi: 10.1002/j.1460-2075.1986.tb04521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. R., De Marco A., Wagner G., Wüthrich K. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz. Eur J Biochem. 1976 Feb 2;62(1):103–107. doi: 10.1111/j.1432-1033.1976.tb10102.x. [DOI] [PubMed] [Google Scholar]
- Buckle A. M., Henrick K., Fersht A. R. Crystal structural analysis of mutations in the hydrophobic cores of barnase. J Mol Biol. 1993 Dec 5;234(3):847–860. doi: 10.1006/jmbi.1993.1630. [DOI] [PubMed] [Google Scholar]
- Bycroft M., Ludvigsen S., Fersht A. R., Poulsen F. M. Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Sep 3;30(35):8697–8701. doi: 10.1021/bi00099a030. [DOI] [PubMed] [Google Scholar]
- Chen H. A., Pfuhl M., McAlister M. S., Driscoll P. C. Determination of pK(a) values of carboxyl groups in the N-terminal domain of rat CD2: anomalous pK(a) of a glutamate on the ligand-binding surface. Biochemistry. 2000 Jun 13;39(23):6814–6824. doi: 10.1021/bi992209z. [DOI] [PubMed] [Google Scholar]
- Cohen J. S., Griffin J. H., Schechter A. N. Nuclear magnetic resonance titration curves of histidine ring protons. IV. The effects of phosphate and sulfate on ribonuclease. J Biol Chem. 1973 Jun 25;248(12):4305–4310. [PubMed] [Google Scholar]
- Demchuk E., Genick U. K., Woo T. T., Getzoff E. D., Bashford D. Protonation states and pH titration in the photocycle of photoactive yellow protein. Biochemistry. 2000 Feb 8;39(5):1100–1113. doi: 10.1021/bi991513p. [DOI] [PubMed] [Google Scholar]
- Driscoll P. C., Cyster J. G., Campbell I. D., Williams A. F. Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature. 1991 Oct 24;353(6346):762–765. doi: 10.1038/353762a0. [DOI] [PubMed] [Google Scholar]
- Dunbrack R. L., Jr, Cohen F. E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 1997 Aug;6(8):1661–1681. doi: 10.1002/pro.5560060807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunbrack R. L., Jr, Karplus M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Biol. 1994 May;1(5):334–340. doi: 10.1038/nsb0594-334. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Jeng M. F., Tennant L. L., Slaby I., Lindell M., Cui D. S., Kuprin S., Holmgren A. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry. 1997 Mar 4;36(9):2622–2636. doi: 10.1021/bi961801a. [DOI] [PubMed] [Google Scholar]
- Elcock A. H., McCammon J. A. Electrostatic contributions to the stability of halophilic proteins. J Mol Biol. 1998 Jul 24;280(4):731–748. doi: 10.1006/jmbi.1998.1904. [DOI] [PubMed] [Google Scholar]
- Ferguson-Miller Shelagh, Babcock Gerald T. Heme/Copper Terminal Oxidases. Chem Rev. 1996 Nov 7;96(7):2889–2908. doi: 10.1021/cr950051s. [DOI] [PubMed] [Google Scholar]
- Forsyth W. R., Gilson M. K., Antosiewicz J., Jaren O. R., Robertson A. D. Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. Biochemistry. 1998 Jun 16;37(24):8643–8652. doi: 10.1021/bi980187v. [DOI] [PubMed] [Google Scholar]
- Fujinaga M., Sielecki A. R., Read R. J., Ardelt W., Laskowski M., Jr, James M. N. Crystal and molecular structures of the complex of alpha-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 A resolution. J Mol Biol. 1987 May 20;195(2):397–418. doi: 10.1016/0022-2836(87)90659-0. [DOI] [PubMed] [Google Scholar]
- Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
- García-Moreno B., Dwyer J. J., Gittis A. G., Lattman E. E., Spencer D. S., Stites W. E. Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys Chem. 1997 Feb 28;64(1-3):211–224. doi: 10.1016/s0301-4622(96)02238-7. [DOI] [PubMed] [Google Scholar]
- Gibas C. J., Subramaniam S. Explicit solvent models in protein pKa calculations. Biophys J. 1996 Jul;71(1):138–147. doi: 10.1016/S0006-3495(96)79209-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giletto A., Pace C. N. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1. Biochemistry. 1999 Oct 5;38(40):13379–13384. doi: 10.1021/bi991422s. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Honig B. H. Energetics of charge-charge interactions in proteins. Proteins. 1988;3(1):32–52. doi: 10.1002/prot.340030104. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Rashin A., Fine R., Honig B. On the calculation of electrostatic interactions in proteins. J Mol Biol. 1985 Aug 5;184(3):503–516. doi: 10.1016/0022-2836(85)90297-9. [DOI] [PubMed] [Google Scholar]
- Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
- Gunner M. R., Alexov E. A pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins. Biochim Biophys Acta. 2000 May 12;1458(1):63–87. doi: 10.1016/s0005-2728(00)00060-8. [DOI] [PubMed] [Google Scholar]
- Gunner M. R., Saleh M. A., Cross E., ud-Doula A., Wise M. Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J. 2000 Mar;78(3):1126–1144. doi: 10.1016/S0006-3495(00)76671-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Havranek J. J., Harbury P. B. Tanford-Kirkwood electrostatics for protein modeling. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11145–11150. doi: 10.1073/pnas.96.20.11145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendsch Z. S., Jonsson T., Sauer R. T., Tidor B. Protein stabilization by removal of unsatisfied polar groups: computational approaches and experimental tests. Biochemistry. 1996 Jun 18;35(24):7621–7625. doi: 10.1021/bi9605191. [DOI] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Hooft R. W., Sander C., Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins. 1996 Dec;26(4):363–376. doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Hoogstraten C. G., Choe S., Westler W. M., Markley J. L. Comparison of the accuracy of protein solution structures derived from conventional and network-edited NOESY data. Protein Sci. 1995 Nov;4(11):2289–2299. doi: 10.1002/pro.5560041106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howlin B., Moss D. S., Harris G. W. Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model. Acta Crystallogr A. 1989 Dec 1;45(Pt 12):851–861. doi: 10.1107/s0108767389009177. [DOI] [PubMed] [Google Scholar]
- Hyland L. J., Tomaszek T. A., Jr, Meek T. D. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry. 1991 Aug 27;30(34):8454–8463. doi: 10.1021/bi00098a024. [DOI] [PubMed] [Google Scholar]
- Ido E., Han H. P., Kezdy F. J., Tang J. Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S. J Biol Chem. 1991 Dec 25;266(36):24359–24366. [PubMed] [Google Scholar]
- Inagaki F., Kawano Y., Shimada I., Takahashi K., Miyazawa T. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. J Biochem. 1981 Apr;89(4):1185–1195. [PubMed] [Google Scholar]
- Jones E. Y., Davis S. J., Williams A. F., Harlos K., Stuart D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
- Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Nakamura H., Ikehara M., Matsuzaki T., Morikawa K. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J Mol Biol. 1992 Feb 20;223(4):1029–1052. doi: 10.1016/0022-2836(92)90260-q. [DOI] [PubMed] [Google Scholar]
- Katayanagi K., Okumura M., Morikawa K. Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site. Proteins. 1993 Dec;17(4):337–346. doi: 10.1002/prot.340170402. [DOI] [PubMed] [Google Scholar]
- Kesvatera T., Jönsson B., Thulin E., Linse S. Ionization behavior of acidic residues in calbindin D(9k). Proteins. 1999 Oct 1;37(1):106–115. [PubMed] [Google Scholar]
- Kesvatera T., Jönsson B., Thulin E., Linse S. Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k. J Mol Biol. 1996 Jun 21;259(4):828–839. doi: 10.1006/jmbi.1996.0361. [DOI] [PubMed] [Google Scholar]
- Khare D., Alexander P., Antosiewicz J., Bryan P., Gilson M., Orban J. pKa measurements from nuclear magnetic resonance for the B1 and B2 immunoglobulin G-binding domains of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures. Biochemistry. 1997 Mar 25;36(12):3580–3589. doi: 10.1021/bi9630927. [DOI] [PubMed] [Google Scholar]
- Kostrewa D., Choe H. W., Heinemann U., Saenger W. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding. Biochemistry. 1989 Sep 19;28(19):7592–7600. doi: 10.1021/bi00445a014. [DOI] [PubMed] [Google Scholar]
- Kuramitsu S., Hamaguchi K. Analysis of the acid-base titration curve of hen lysozyme. J Biochem. 1980 Apr;87(4):1215–1219. [PubMed] [Google Scholar]
- Laskowski M., Jr, Kato I., Ardelt W., Cook J., Denton A., Empie M. W., Kohr W. J., Park S. J., Parks K., Schatzley B. L. Ovomucoid third domains from 100 avian species: isolation, sequences, and hypervariability of enzyme-inhibitor contact residues. Biochemistry. 1987 Jan 13;26(1):202–221. doi: 10.1021/bi00375a028. [DOI] [PubMed] [Google Scholar]
- Loewenthal R., Sancho J., Reinikainen T., Fersht A. R. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J Mol Biol. 1993 Jul 20;232(2):574–583. doi: 10.1006/jmbi.1993.1412. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
- March K. L., Maskalick D. G., England R. D., Friend S. H., Gurd F. R. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. Biochemistry. 1982 Oct 12;21(21):5241–5251. doi: 10.1021/bi00264a020. [DOI] [PubMed] [Google Scholar]
- Martin C., Richard V., Salem M., Hartley R., Mauguen Y. Refinement and structural analysis of barnase at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):386–398. doi: 10.1107/s0907444998010865. [DOI] [PubMed] [Google Scholar]
- Matthew J. B., Gurd F. R., Garcia-Moreno B., Flanagan M. A., March K. L., Shire S. J. pH-dependent processes in proteins. CRC Crit Rev Biochem. 1985;18(2):91–197. doi: 10.3109/10409238509085133. [DOI] [PubMed] [Google Scholar]
- Matthews C. R., Westmoreland D. G. A Fourier transform NMR study of the thermal denaturation of ribonuclease A at low pH. Ann N Y Acad Sci. 1973 Dec 31;222:240–254. doi: 10.1111/j.1749-6632.1973.tb15266.x. [DOI] [PubMed] [Google Scholar]
- Mauguen Y., Hartley R. W., Dodson E. J., Dodson G. G., Bricogne G., Chothia C., Jack A. Molecular structure of a new family of ribonucleases. Nature. 1982 May 13;297(5862):162–164. doi: 10.1038/297162a0. [DOI] [PubMed] [Google Scholar]
- McAlister M. S., Mott H. R., van der Merwe P. A., Campbell I. D., Davis S. J., Driscoll P. C. NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48. Biochemistry. 1996 May 14;35(19):5982–5991. doi: 10.1021/bi952756u. [DOI] [PubMed] [Google Scholar]
- McNutt M., Mullins L. S., Raushel F. M., Pace C. N. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala. Biochemistry. 1990 Aug 21;29(33):7572–7576. doi: 10.1021/bi00485a005. [DOI] [PubMed] [Google Scholar]
- Meadows D. H., Roberts G. C., Jardetzky O. Nuclear magnetic resonance studies of the structure and binding sites of enzymes. 8. Inhibitor binding to ribonuclease. J Mol Biol. 1969 Nov 14;45(3):491–511. doi: 10.1016/0022-2836(69)90308-8. [DOI] [PubMed] [Google Scholar]
- Mehler E. L., Guarnieri F. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys J. 1999 Jul;77(1):3–22. doi: 10.1016/S0006-3495(99)76868-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellor G. W., Patel M., Thomas E. W., Brocklehurst K. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu. Biochem J. 1993 Aug 15;294(Pt 1):201–210. doi: 10.1042/bj2940201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
- Nielsen J. E., Vriend G. Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-based pK(a) calculations. Proteins. 2001 Jun 1;43(4):403–412. doi: 10.1002/prot.1053. [DOI] [PubMed] [Google Scholar]
- Oda Y., Yamazaki T., Nagayama K., Kanaya S., Kuroda Y., Nakamura H. Individual ionization constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR. Biochemistry. 1994 May 3;33(17):5275–5284. doi: 10.1021/bi00183a034. [DOI] [PubMed] [Google Scholar]
- Oda Y., Yoshida M., Kanaya S. Role of histidine 124 in the catalytic function of ribonuclease HI from Escherichia coli. J Biol Chem. 1993 Jan 5;268(1):88–92. [PubMed] [Google Scholar]
- Oliveberg M., Arcus V. L., Fersht A. R. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry. 1995 Jul 25;34(29):9424–9433. doi: 10.1021/bi00029a018. [DOI] [PubMed] [Google Scholar]
- Onufriev A., Case D. A., Ullmann G. M. A novel view of pH titration in biomolecules. Biochemistry. 2001 Mar 27;40(12):3413–3419. doi: 10.1021/bi002740q. [DOI] [PubMed] [Google Scholar]
- Quirk D. J., Raines R. T. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. Biophys J. 1999 Mar;76(3):1571–1579. doi: 10.1016/S0006-3495(99)77316-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Read R. J., Fujinaga M., Sielecki A. R., James M. N. Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8-A resolution. Biochemistry. 1983 Sep 13;22(19):4420–4433. doi: 10.1021/bi00288a012. [DOI] [PubMed] [Google Scholar]
- Ripoll D. R., Vorobjev Y. N., Liwo A., Vila J. A., Scheraga H. A. Coupling between folding and ionization equilibria: effects of pH on the conformational preferences of polypeptides. J Mol Biol. 1996 Dec 13;264(4):770–783. doi: 10.1006/jmbi.1996.0676. [DOI] [PubMed] [Google Scholar]
- Rüterjans H., Witzel H. NMR-studies on the structure of the active site of pancreatic ribonuclease A. Eur J Biochem. 1969 May 1;9(1):118–127. doi: 10.1111/j.1432-1033.1969.tb00584.x. [DOI] [PubMed] [Google Scholar]
- Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J., Rico M. High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy. J Mol Biol. 1993 Feb 5;229(3):722–734. doi: 10.1006/jmbi.1993.1075. [DOI] [PubMed] [Google Scholar]
- Schaller W., Robertson A. D. pH, ionic strength, and temperature dependences of ionization equilibria for the carboxyl groups in turkey ovomucoid third domain. Biochemistry. 1995 Apr 11;34(14):4714–4723. doi: 10.1021/bi00014a028. [DOI] [PubMed] [Google Scholar]
- Schutz C. N., Warshel A. What are the dielectric "constants" of proteins and how to validate electrostatic models? Proteins. 2001 Sep 1;44(4):400–417. doi: 10.1002/prot.1106. [DOI] [PubMed] [Google Scholar]
- Schwalbe H., Grimshaw S. B., Spencer A., Buck M., Boyd J., Dobson C. M., Redfield C., Smith L. J. A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Protein Sci. 2001 Apr;10(4):677–688. doi: 10.1110/ps.43301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sham Y. Y., Muegge I., Warshel A. Simulating proton translocations in proteins: probing proton transfer pathways in the Rhodobacter sphaeroides reaction center. Proteins. 1999 Sep 1;36(4):484–500. [PubMed] [Google Scholar]
- Sham Y. Y., Muegge I., Warshel A. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J. 1998 Apr;74(4):1744–1753. doi: 10.1016/S0006-3495(98)77885-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheinerman F. B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000 Apr;10(2):153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
- Simonson T. Macromolecular electrostatics: continuum models and their growing pains. Curr Opin Struct Biol. 2001 Apr;11(2):243–252. doi: 10.1016/s0959-440x(00)00197-4. [DOI] [PubMed] [Google Scholar]
- Sindelar C. V., Hendsch Z. S., Tidor B. Effects of salt bridges on protein structure and design. Protein Sci. 1998 Sep;7(9):1898–1914. doi: 10.1002/pro.5560070906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skelton N. J., Kördel J., Chazin W. J. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol. 1995 Jun 2;249(2):441–462. doi: 10.1006/jmbi.1995.0308. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Sutcliffe M. J., Redfield C., Dobson C. M. Structure of hen lysozyme in solution. J Mol Biol. 1993 Feb 20;229(4):930–944. doi: 10.1006/jmbi.1993.1097. [DOI] [PubMed] [Google Scholar]
- Song J., Markley J. L. NMR chemical shift mapping of the binding site of a protein proteinase inhibitor: changes in the (1)H, (13)C and (15)N NMR chemical shifts of turkey ovomucoid third domain upon binding to bovine chymotrypsin A(alpha). J Mol Recognit. 2001 May-Jun;14(3):166–171. doi: 10.1002/jmr.530. [DOI] [PubMed] [Google Scholar]
- Spassov V. Z., Ladenstein R., Karshikoff A. D. Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci. 1997 Jun;6(6):1190–1196. doi: 10.1002/pro.5560060607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunder-Plassmann R., Reinherz E. L. A p56lck-independent pathway of CD2 signaling involves Jun kinase. J Biol Chem. 1998 Sep 11;273(37):24249–24257. doi: 10.1074/jbc.273.37.24249. [DOI] [PubMed] [Google Scholar]
- Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
- Takahashi T., Nakamura H., Wada A. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Biopolymers. 1992 Aug;32(8):897–909. doi: 10.1002/bip.360320802. [DOI] [PubMed] [Google Scholar]
- Takashima S., Schwan H. P. Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. J Phys Chem. 1965 Dec;69(12):4176–4182. doi: 10.1021/j100782a019. [DOI] [PubMed] [Google Scholar]
- Tashiro M., Montelione G. T. Structures of bacterial immunoglobulin-binding domains and their complexes with immunoglobulins. Curr Opin Struct Biol. 1995 Aug;5(4):471–481. doi: 10.1016/0959-440x(95)80031-x. [DOI] [PubMed] [Google Scholar]
- Thanki N., Rao J. K., Foundling S. I., Howe W. J., Moon J. B., Hui J. O., Tomasselli A. G., Heinrikson R. L., Thaisrivongs S., Wlodawer A. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling. Protein Sci. 1992 Aug;1(8):1061–1072. doi: 10.1002/pro.5560010811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaney M. C., Maignan S., Riès-Kautt M., Ducriux A. High-resolution structure (1.33 A) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):505–517. doi: 10.1107/S090744499501674X. [DOI] [PubMed] [Google Scholar]
- Vocadlo D. J., Davies G. J., Laine R., Withers S. G. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001 Aug 23;412(6849):835–838. doi: 10.1038/35090602. [DOI] [PubMed] [Google Scholar]
- Walters D. E., Allerhand A. Tautomeric states of the histidine residues of bovine pancreatic ribonuclease A. Application of carbon 13 nuclear magnetic resonance spectroscopy. J Biol Chem. 1980 Jul 10;255(13):6200–6204. [PubMed] [Google Scholar]
- Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
- Warwicker J. Simplified methods for pKa and acid pH-dependent stability estimation in proteins: removing dielectric and counterion boundaries. Protein Sci. 1999 Feb;8(2):418–425. doi: 10.1110/ps.8.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]
- Wilson K. P., Malcolm B. A., Matthews B. W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J Biol Chem. 1992 May 25;267(15):10842–10849. [PubMed] [Google Scholar]
- Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
- Wolfenden R., Radzicka A. On the probability of finding a water molecule in a nonpolar cavity. Science. 1994 Aug 12;265(5174):936–937. doi: 10.1126/science.8052849. [DOI] [PubMed] [Google Scholar]
- Yamazaki T., Hasebe T., Shouguchi J., Amano H., Kajiwara S., Shishido K. Structure and function in Escherichia coli of plasmids containing pyrimidine/purine-biased stretch originated from the 5'-flanking region of the basidiomycete ras gene. J Biochem. 1997 Oct;122(4):696–702. doi: 10.1093/oxfordjournals.jbchem.a021811. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Honig B. On the pH dependence of protein stability. J Mol Biol. 1993 May 20;231(2):459–474. doi: 10.1006/jmbi.1993.1294. [DOI] [PubMed] [Google Scholar]
- Yang W., Hendrickson W. A., Crouch R. J., Satow Y. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 1990 Sep 21;249(4975):1398–1405. doi: 10.1126/science.2169648. [DOI] [PubMed] [Google Scholar]
- You T. J., Bashford D. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J. 1995 Nov;69(5):1721–1733. doi: 10.1016/S0006-3495(95)80042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou H. X., Vijayakumar M. Modeling of protein conformational fluctuations in pKa predictions. J Mol Biol. 1997 Apr 11;267(4):1002–1011. doi: 10.1006/jmbi.1997.0895. [DOI] [PubMed] [Google Scholar]
- van Vlijmen H. W., Schaefer M., Karplus M. Improving the accuracy of protein pKa calculations: conformational averaging versus the average structure. Proteins. 1998 Nov 1;33(2):145–158. doi: 10.1002/(sici)1097-0134(19981101)33:2<145::aid-prot1>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- van der Merwe P. A., McNamee P. N., Davies E. A., Barclay A. N., Davis S. J. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. Curr Biol. 1995 Jan 1;5(1):74–84. doi: 10.1016/s0960-9822(95)00019-4. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.