Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2007–2014. doi: 10.1016/S0006-3495(02)73962-3

Intramembrane electrostatic interactions destabilize lipid vesicles.

Scott D Shoemaker 1, T Kyle Vanderlick 1
PMCID: PMC1302290  PMID: 12324419

Abstract

Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding) and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound) anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions in membrane stability.

Full Text

The Full Text of this article is available as a PDF (102.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi K., Miyata H., Itoh H., Kinosita K., Jr Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J. 1996 Dec;71(6):3242–3250. doi: 10.1016/S0006-3495(96)79517-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cevc G. Membrane electrostatics. Biochim Biophys Acta. 1990 Oct 8;1031(3):311–382. doi: 10.1016/0304-4157(90)90015-5. [DOI] [PubMed] [Google Scholar]
  3. Cortez-Maghelly C., Bisch P. M. Effect of ionic strength and outer surface charge on the mechanical stability of the erythrocyte membrane: a linear hydrodynamic analysis. J Theor Biol. 1995 Oct 7;176(3):325–339. doi: 10.1006/jtbi.1995.0202. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
  5. Findlay E. J., Barton P. G. Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry. 1978 Jun 13;17(12):2400–2405. doi: 10.1021/bi00605a023. [DOI] [PubMed] [Google Scholar]
  6. Gallez D., Coakley W. T. Interfacial instability at cell membranes. Prog Biophys Mol Biol. 1986;48(3):155–199. doi: 10.1016/0079-6107(86)90011-8. [DOI] [PubMed] [Google Scholar]
  7. Genco I., Gliozzi A., Relini A., Robello M., Scalas E. Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta. 1993 Jun 18;1149(1):10–18. doi: 10.1016/0005-2736(93)90019-v. [DOI] [PubMed] [Google Scholar]
  8. Graham I., Gagné J., Silvius J. R. Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry. 1985 Dec 3;24(25):7123–7131. doi: 10.1021/bi00346a016. [DOI] [PubMed] [Google Scholar]
  9. Haines T. H., Li W., Green M., Cummins H. Z. The elasticity of uniform, unilamellar vesicles of acidic phospholipids during osmotic swelling is dominated by the ionic strength of the media. Biochemistry. 1987 Aug 25;26(17):5439–5447. doi: 10.1021/bi00391a034. [DOI] [PubMed] [Google Scholar]
  10. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  11. Jähnig F., Harlos K., Vogel H., Eibl H. Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt. Biochemistry. 1979 Apr 17;18(8):1459–1468. doi: 10.1021/bi00575a012. [DOI] [PubMed] [Google Scholar]
  12. Kates M. Bacterial lipids. Adv Lipid Res. 1964;2:17–90. [PubMed] [Google Scholar]
  13. Kraayenhof R., Sterk G. J., Wong Fong Sang H. W., Krab K., Epand R. M. Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochim Biophys Acta. 1996 Jul 25;1282(2):293–302. doi: 10.1016/0005-2736(96)00069-7. [DOI] [PubMed] [Google Scholar]
  14. Langner M., Kubica K. The electrostatics of lipid surfaces. Chem Phys Lipids. 1999 Aug;101(1):3–35. doi: 10.1016/s0009-3084(99)00052-3. [DOI] [PubMed] [Google Scholar]
  15. Longo M. L., Waring A. J., Hammer D. A. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation. Biophys J. 1997 Sep;73(3):1430–1439. doi: 10.1016/S0006-3495(97)78175-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pott T., Maillet J. C., Dufourc E. J. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study. Biophys J. 1995 Nov;69(5):1897–1908. doi: 10.1016/S0006-3495(95)80060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rawicz W., Olbrich K. C., McIntosh T., Needham D., Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000 Jul;79(1):328–339. doi: 10.1016/S0006-3495(00)76295-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rutkowski C. A., Williams L. M., Haines T. H., Cummins H. Z. The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy. Biochemistry. 1991 Jun 11;30(23):5688–5696. doi: 10.1021/bi00237a008. [DOI] [PubMed] [Google Scholar]
  20. Sato Y., Kaneko K., Mikami K., Mizugaki M., Suzuki Y. Isolation of bovine serum albumin fragment P-9 and P-9-mediated fusion of small unilamellar vesicles. Biol Pharm Bull. 1999 Dec;22(12):1360–1365. doi: 10.1248/bpb.22.1360. [DOI] [PubMed] [Google Scholar]
  21. Schenkman S., Araujo P. S., Dijkman R., Quina F. H., Chaimovich H. Effects of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles. Biochim Biophys Acta. 1981 Dec 21;649(3):633–647. doi: 10.1016/0005-2736(81)90168-1. [DOI] [PubMed] [Google Scholar]
  22. Song J., Waugh R. E. Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles. J Biomech Eng. 1990 Aug;112(3):235–240. doi: 10.1115/1.2891178. [DOI] [PubMed] [Google Scholar]
  23. Wu Y., Fletcher G. L. Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim Biophys Acta. 2001 Nov 15;1524(1):11–16. doi: 10.1016/s0304-4165(00)00134-3. [DOI] [PubMed] [Google Scholar]
  24. Yokouchi Y, Tsunoda T, Imura T, Yamauchi H, Yokoyama S, Sakai H, Abe M. Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids Surf B Biointerfaces. 2001 Feb 1;20(2):95–103. doi: 10.1016/s0927-7765(00)00176-4. [DOI] [PubMed] [Google Scholar]
  25. Zhelev D. V. Material property characteristics for lipid bilayers containing lysolipid. Biophys J. 1998 Jul;75(1):321–330. doi: 10.1016/S0006-3495(98)77516-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhelev D. V., Needham D. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta. 1993 Apr 8;1147(1):89–104. doi: 10.1016/0005-2736(93)90319-u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES