Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2386–2392. doi: 10.1016/s0006-3495(02)75252-1

Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition.

Siewert-Jan Marrink 1, D Peter Tieleman 1
PMCID: PMC1302327  PMID: 12414675

Abstract

We report a molecular dynamics simulation of the phase transition of monoolein from an inverted cubic phase to an inverted hexagonal phase. The transition proceeds via an intermediate structure consisting of water channels in a cubic geometry, in agreement with the predictions of the modified stalk theory (Siegel, 1999). Two mechanisms are identified by which the topology changes during the transition. Bilayer fusion proceeds via the formation of trans-monolayer contacts, whereas bilayer rupture is observed as a gradual thinning of each monolayer.

Full Text

The Full Text of this article is available as a PDF (870.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Glaser R. W., Leikin S. L., Chernomordik L. V., Pastushenko V. F., Sokirko A. I. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988 May 24;940(2):275–287. doi: 10.1016/0005-2736(88)90202-7. [DOI] [PubMed] [Google Scholar]
  3. Groot R. D., Rabone K. L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J. 2001 Aug;81(2):725–736. doi: 10.1016/S0006-3495(01)75737-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kozlovsky Yonathan, Kozlov Michael M. Stalk model of membrane fusion: solution of energy crisis. Biophys J. 2002 Feb;82(2):882–895. doi: 10.1016/S0006-3495(02)75450-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuzmin P. I., Zimmerberg J., Chizmadzhev Y. A., Cohen F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7235–7240. doi: 10.1073/pnas.121191898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lentz Barry R., Siegel David P., Malinin Vladimir. Filling potholes on the path to fusion pores. Biophys J. 2002 Feb;82(2):555–557. doi: 10.1016/S0006-3495(02)75420-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Luzzati V. Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol. 1997 Oct;7(5):661–668. doi: 10.1016/s0959-440x(97)80075-9. [DOI] [PubMed] [Google Scholar]
  8. Markin Vladislav S., Albanesi Joseph P. Membrane fusion: stalk model revisited. Biophys J. 2002 Feb;82(2):693–712. doi: 10.1016/S0006-3495(02)75432-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marrink S. J., Tieleman D. P. Molecular dynamics simulation of a lipid diamond cubic phase. J Am Chem Soc. 2001 Dec 12;123(49):12383–12391. doi: 10.1021/ja016012h. [DOI] [PubMed] [Google Scholar]
  10. Mecke KR. Morphological characterization of patterns in reaction-diffusion systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 May;53(5):4794–4800. doi: 10.1103/physreve.53.4794. [DOI] [PubMed] [Google Scholar]
  11. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Siegel D. P. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J. 1999 Jan;76(1 Pt 1):291–313. doi: 10.1016/S0006-3495(99)77197-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wilson M. A., Pohorille A. Molecular dynamics of a water-lipid bilayer interface. J Am Chem Soc. 1994;116(4):1490–1501. doi: 10.1021/ja00083a038. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES