Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2716–2725. doi: 10.1016/S0006-3495(02)75281-8

Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping.

Inna Krieger 1, Alla Kostyukova 1, Atsuko Yamashita 1, Yasushi Nitanai 1, Yuichiro Maéda 1
PMCID: PMC1302356  PMID: 12414704

Abstract

Tropomodulin is the unique pointed-end capping protein of the actin-tropomyosin filament. By blocking elongation and depolymerization, tropomodulin regulates the architecture and the dynamics of the filament. Here we report the crystal structure at 1.45-A resolution of the C-terminal half of tropomodulin (C20), the actin-binding moiety of tropomodulin. C20 is a leucine-rich repeat domain, and this is the first actin-associated protein with a leucine-rich repeat. Binding assays suggested that C20 also interacts with the N-terminal fragment, M1-M2-M3, of nebulin. Based on the crystal structure, we propose a model for C20 docking to the actin subunit at the pointed end. Although speculative, the model is consistent with the idea that a tropomodulin molecule competes with an actin subunit for a pointed end. The model also suggests that interactions with tropomyosin, actin, and nebulin are all possible sources of influences on the dynamic properties of pointed-end capping by tropomodulin.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babcock G. G., Fowler V. M. Isoform-specific interaction of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J Biol Chem. 1994 Nov 4;269(44):27510–27518. [PubMed] [Google Scholar]
  3. Buchanan S. G., Gay N. J. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol. 1996;65(1-2):1–44. doi: 10.1016/s0079-6107(96)00003-x. [DOI] [PubMed] [Google Scholar]
  4. Conley C. A., Fritz-Six K. L., Almenar-Queralt A., Fowler V. M. Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics. 2001 Apr 15;73(2):127–139. doi: 10.1006/geno.2000.6501. [DOI] [PubMed] [Google Scholar]
  5. Cox P. R., Zoghbi H. Y. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics. 2000 Jan 1;63(1):97–107. doi: 10.1006/geno.1999.6061. [DOI] [PubMed] [Google Scholar]
  6. Fowler V. M. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990 Aug;111(2):471–481. doi: 10.1083/jcb.111.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujisawa T., Kostyukova A., Maéda Y. The shapes and sizes of two domains of tropomodulin, the P-end-capping protein of actin-tropomyosin. FEBS Lett. 2001 Jun 1;498(1):67–71. doi: 10.1016/s0014-5793(01)02498-x. [DOI] [PubMed] [Google Scholar]
  8. Fujita-Becker S., Kluwe L., Miegel A., Maeda K., Maéda Y. Reconstitution of rabbit skeletal muscle troponin from the recombinant subunits all expressed in and purified from E. coli. J Biochem. 1993 Sep;114(3):438–444. doi: 10.1093/oxfordjournals.jbchem.a124194. [DOI] [PubMed] [Google Scholar]
  9. Gregorio C. C., Weber A., Bondad M., Pennise C. R., Fowler V. M. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature. 1995 Sep 7;377(6544):83–86. doi: 10.1038/377083a0. [DOI] [PubMed] [Google Scholar]
  10. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  11. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  12. Kajava A. V. Structural diversity of leucine-rich repeat proteins. J Mol Biol. 1998 Apr 3;277(3):519–527. doi: 10.1006/jmbi.1998.1643. [DOI] [PubMed] [Google Scholar]
  13. Kobe B., Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995 Mar 9;374(6518):183–186. doi: 10.1038/374183a0. [DOI] [PubMed] [Google Scholar]
  14. Kobe B., Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995 Jun;5(3):409–416. doi: 10.1016/0959-440x(95)80105-7. [DOI] [PubMed] [Google Scholar]
  15. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  16. Kobe B., Kajava A. V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001 Dec;11(6):725–732. doi: 10.1016/s0959-440x(01)00266-4. [DOI] [PubMed] [Google Scholar]
  17. Kostyukova A. S., Tiktopulo E. I., Maéda Y. Folding properties of functional domains of tropomodulin. Biophys J. 2001 Jul;81(1):345–351. doi: 10.1016/S0006-3495(01)75704-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kostyukova A., Maeda K., Yamauchi E., Krieger I., Maéda Y. Domain structure of tropomodulin: distinct properties of the N-terminal and C-terminal halves. Eur J Biochem. 2000 Nov;267(21):6470–6475. doi: 10.1046/j.1432-1327.2000.01738.x. [DOI] [PubMed] [Google Scholar]
  19. Krieger I., Kostyukova A. S., Maéda Y. Crystallization and preliminary characterization of crystals of the C-terminal half fragment of tropomodulin. Acta Crystallogr D Biol Crystallogr. 2001 Apr 24;57(Pt 5):743–744. doi: 10.1107/s0907444901003924. [DOI] [PubMed] [Google Scholar]
  20. Labeit S., Gibson T., Lakey A., Leonard K., Zeviani M., Knight P., Wardale J., Trinick J. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett. 1991 May 6;282(2):313–316. doi: 10.1016/0014-5793(91)80503-u. [DOI] [PubMed] [Google Scholar]
  21. Labeit S., Kolmerer B. The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol. 1995 Apr 28;248(2):308–315. doi: 10.1016/s0022-2836(95)80052-2. [DOI] [PubMed] [Google Scholar]
  22. Littlefield R., Almenar-Queralt A., Fowler V. M. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol. 2001 Jun;3(6):544–551. doi: 10.1038/35078517. [DOI] [PubMed] [Google Scholar]
  23. Littlefield R., Fowler V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu Rev Cell Dev Biol. 1998;14:487–525. doi: 10.1146/annurev.cellbio.14.1.487. [DOI] [PubMed] [Google Scholar]
  24. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  25. Lukoyanova Natalya, VanLoock Margaret S., Orlova Albina, Galkin Vitold E., Wang Kuan, Egelman Edward H. Each actin subunit has three nebulin binding sites: implications for steric blocking. Curr Biol. 2002 Mar 5;12(5):383–388. doi: 10.1016/s0960-9822(02)00678-4. [DOI] [PubMed] [Google Scholar]
  26. McElhinny A. S., Kolmerer B., Fowler V. M., Labeit S., Gregorio C. C. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem. 2001 Jan 5;276(1):583–592. doi: 10.1074/jbc.M005693200. [DOI] [PubMed] [Google Scholar]
  27. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  28. Miegel A., Kobayashi T., Maéda Y. Isolation, purification and partial characterization of tropomyosin and troponin subunits from the lobster tail muscle. J Muscle Res Cell Motil. 1992 Dec;13(6):608–618. doi: 10.1007/BF01738250. [DOI] [PubMed] [Google Scholar]
  29. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  30. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  31. Papageorgiou A. C., Shapiro R., Acharya K. R. Molecular recognition of human angiogenin by placental ribonuclease inhibitor--an X-ray crystallographic study at 2.0 A resolution. EMBO J. 1997 Sep 1;16(17):5162–5177. doi: 10.1093/emboj/16.17.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Park M., Yaich L. E., Bodmer R. Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, Notch, and sanpodo. Mech Dev. 1998 Jul;75(1-2):117–126. doi: 10.1016/s0925-4773(98)00098-7. [DOI] [PubMed] [Google Scholar]
  33. Perrakis A., Morris R., Lamzin V. S. Automated protein model building combined with iterative structure refinement. Nat Struct Biol. 1999 May;6(5):458–463. doi: 10.1038/8263. [DOI] [PubMed] [Google Scholar]
  34. Pfuhl M., Winder S. J., Castiglione Morelli M. A., Labeit S., Pastore A. Correlation between conformational and binding properties of nebulin repeats. J Mol Biol. 1996 Mar 29;257(2):367–384. doi: 10.1006/jmbi.1996.0169. [DOI] [PubMed] [Google Scholar]
  35. Pfuhl M., Winder S. J., Pastore A. Nebulin, a helical actin binding protein. EMBO J. 1994 Apr 15;13(8):1782–1789. doi: 10.1002/j.1460-2075.1994.tb06446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Price S. R., Evans P. R., Nagai K. Crystal structure of the spliceosomal U2B"-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature. 1998 Aug 13;394(6694):645–650. doi: 10.1038/29234. [DOI] [PubMed] [Google Scholar]
  37. Saeki K., Sutoh K., Wakabayashi T. Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis. Biochemistry. 1996 Nov 19;35(46):14465–14472. doi: 10.1021/bi961292c. [DOI] [PubMed] [Google Scholar]
  38. Terwilliger T. C., Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849–861. doi: 10.1107/S0907444999000839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trakhanov S., Kreimer D. I., Parkin S., Ames G. F., Rupp B. Cadmium-induced crystallization of proteins: II. Crystallization of the Salmonella typhimurium histidine-binding protein in complex with L-histidine, L-arginine, or L-lysine. Protein Sci. 1998 Mar;7(3):600–604. doi: 10.1002/pro.5560070308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trakhanov S., Quiocho F. A. Influence of divalent cations in protein crystallization. Protein Sci. 1995 Sep;4(9):1914–1919. doi: 10.1002/pro.5560040925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trinick J. Titin and nebulin: protein rulers in muscle? Trends Biochem Sci. 1994 Oct;19(10):405–409. doi: 10.1016/0968-0004(94)90088-4. [DOI] [PubMed] [Google Scholar]
  42. Vera C., Sood A., Gao K. M., Yee L. J., Lin J. J., Sung L. A. Tropomodulin-binding site mapped to residues 7-14 at the N-terminal heptad repeats of tropomyosin isoform 5. Arch Biochem Biophys. 2000 Jun 1;378(1):16–24. doi: 10.1006/abbi.2000.1802. [DOI] [PubMed] [Google Scholar]
  43. Weber A., Pennise C. R., Babcock G. G., Fowler V. M. Tropomodulin caps the pointed ends of actin filaments. J Cell Biol. 1994 Dec;127(6 Pt 1):1627–1635. doi: 10.1083/jcb.127.6.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weber A., Pennise C. R., Fowler V. M. Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADP.P(i)-actin to ADP-actin at all pointed filament ends. J Biol Chem. 1999 Dec 3;274(49):34637–34645. doi: 10.1074/jbc.274.49.34637. [DOI] [PubMed] [Google Scholar]
  45. Xu P., Mitchelhill K. I., Kobe B., Kemp B. E., Zot H. G. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3685–3690. doi: 10.1073/pnas.94.8.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES