Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2872–2878. doi: 10.1016/S0006-3495(02)75296-X

Laminar-flow fluid mixer for fast fluorescence kinetics studies.

Suzette A Pabit 1, Stephen J Hagen 1
PMCID: PMC1302371  PMID: 12414719

Abstract

The ability to mix aqueous liquids on microsecond time scales, while consuming minimal amounts of sample and maintaining UV-visible optical access to the mixing region, is highly desirable for a range of biophysical studies of fast protein and nucleic acid interactions and folding. We have constructed a laminar coaxial jet mixer that allows the measurement of UV-excited fluorescence from nanoliter and microliter quantities of material, mixed at microsecond rates. The mixer injects a narrow cylindrical stream (radius a < 1 microm) of fluorescent sample into a larger flow of diluting buffer that moves through a capillary (100 microm i.d.) at a speed approximately 20 cm/s, under laminar flow conditions (Re approximately equal to 14). Construction from a fused silica capillary allows the laser excitation (at 266 nm) and detection (at 350 nm) of tryptophan fluorescence at reasonably low working concentrations, without interference from background fluorescence. Using this mixer we have measured sub-millisecond fluorescence quenching kinetics while consuming fluorescent sample at rates no greater than 6 nl/s. Consumption of the diluting buffer is also very modest (approximately 1-3 microl/s) in comparison with other rapid mixer designs.

Full Text

The Full Text of this article is available as a PDF (313.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama Shuji, Takahashi Satoshi, Kimura Tetsunari, Ishimori Koichiro, Morishima Isao, Nishikawa Yukihiro, Fujisawa Tetsuro. Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc Natl Acad Sci U S A. 2002 Jan 2;99(3):1329–1334. doi: 10.1073/pnas.012458999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brody J. P., Yager P., Goldstein R. E., Austin R. H. Biotechnology at low Reynolds numbers. Biophys J. 1996 Dec;71(6):3430–3441. doi: 10.1016/S0006-3495(96)79538-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callender R. H., Dyer R. B., Gilmanshin R., Woodruff W. H. Fast events in protein folding: the time evolution of primary processes. Annu Rev Phys Chem. 1998;49:173–202. doi: 10.1146/annurev.physchem.49.1.173. [DOI] [PubMed] [Google Scholar]
  4. Chan C. K., Hu Y., Takahashi S., Rousseau D. L., Eaton W. A., Hofrichter J. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1779–1784. doi: 10.1073/pnas.94.5.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eaton W. A., Muñoz V., Hagen S. J., Jas G. S., Lapidus L. J., Henry E. R., Hofrichter J. Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct. 2000;29:327–359. doi: 10.1146/annurev.biophys.29.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  7. Moskowitz G. W., Bowman R. L. Multicapillary mixer of solutions. Science. 1966 Jul 22;153(3734):428–429. doi: 10.1126/science.153.3734.428. [DOI] [PubMed] [Google Scholar]
  8. Peterman B. F. Measurement of the dead time of a fluorescence stopped-flow instrument. Anal Biochem. 1979 Mar;93(2):442–444. doi: 10.1016/s0003-2697(79)80176-1. [DOI] [PubMed] [Google Scholar]
  9. Pollack L., Tate M. W., Darnton N. C., Knight J. B., Gruner S. M., Eaton W. A., Austin R. H. Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10115–10117. doi: 10.1073/pnas.96.18.10115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roder H., Shastry M. R. Methods for exploring early events in protein folding. Curr Opin Struct Biol. 1999 Oct;9(5):620–626. doi: 10.1016/s0959-440x(99)00015-9. [DOI] [PubMed] [Google Scholar]
  11. Russell Rick, Millett Ian S., Tate Mark W., Kwok Lisa W., Nakatani Bradley, Gruner Sol M., Mochrie Simon G. J., Pande Vijay, Doniach Sebastian, Herschlag Daniel. Rapid compaction during RNA folding. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4266–4271. doi: 10.1073/pnas.072589599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scampavia L. D., Blankenstein G., Ruzicka J., Christian G. D. A coaxial jet mixer for rapid kinetic analysis in flow injection and flow injection cytometry. Anal Chem. 1995 Sep 1;67(17):2743–2749. doi: 10.1021/ac00113a004. [DOI] [PubMed] [Google Scholar]
  13. Shastry M. C., Luck S. D., Roder H. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys J. 1998 May;74(5):2714–2721. doi: 10.1016/S0006-3495(98)77977-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Takahashi S., Ching Y. C., Wang J., Rousseau D. L. Microsecond generation of oxygen-bound cytochrome c oxidase by rapid solution mixing. J Biol Chem. 1995 Apr 14;270(15):8405–8407. doi: 10.1074/jbc.270.15.8405. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES