Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3113–3125. doi: 10.1016/S0006-3495(02)75315-0

Addition of missing loops and domains to protein models by x-ray solution scattering.

Maxim V Petoukhov 1, Nigel A J Eady 1, Katherine A Brown 1, Dmitri I Svergun 1
PMCID: PMC1302390  PMID: 12496082

Abstract

Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available.

Full Text

The Full Text of this article is available as a PDF (441.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton A. W., Boehm M. K., Gallimore J. R., Pepys M. B., Perkins S. J. Pentameric and decameric structures in solution of serum amyloid P component by X-ray and neutron scattering and molecular modelling analyses. J Mol Biol. 1997 Sep 26;272(3):408–422. doi: 10.1006/jmbi.1997.1271. [DOI] [PubMed] [Google Scholar]
  2. Aszódi A., Gradwell M. J., Taylor W. R. Global fold determination from a small number of distance restraints. J Mol Biol. 1995 Aug 11;251(2):308–326. doi: 10.1006/jmbi.1995.0436. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Cuff J. A., Barton G. J. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000 Aug 15;40(3):502–511. doi: 10.1002/1097-0134(20000815)40:3<502::aid-prot170>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  5. Cuff J. A., Barton G. J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins. 1999 Mar 1;34(4):508–519. doi: 10.1002/(sici)1097-0134(19990301)34:4<508::aid-prot10>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  6. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14(10):892–893. doi: 10.1093/bioinformatics/14.10.892. [DOI] [PubMed] [Google Scholar]
  7. Diamond R. Real-space refinement of the structure of hen egg-white lysozyme. J Mol Biol. 1974 Jan 25;82(3):371–391. doi: 10.1016/0022-2836(74)90598-1. [DOI] [PubMed] [Google Scholar]
  8. Edwards A. M., Arrowsmith C. H., Christendat D., Dharamsi A., Friesen J. D., Greenblatt J. F., Vedadi M. Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol. 2000 Nov;7 (Suppl):970–972. doi: 10.1038/80751. [DOI] [PubMed] [Google Scholar]
  9. Guo D. Y., Blessing R. H., Langs D. A., Smith G. D. On 'globbicity' of low-resolution protein structures. Acta Crystallogr D Biol Crystallogr. 1999 Jan 1;55(Pt 1):230–237. doi: 10.1107/S0907444998008208. [DOI] [PubMed] [Google Scholar]
  10. Huang E. S., Subbiah S., Levitt M. Recognizing native folds by the arrangement of hydrophobic and polar residues. J Mol Biol. 1995 Oct 6;252(5):709–720. doi: 10.1006/jmbi.1995.0529. [DOI] [PubMed] [Google Scholar]
  11. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
  12. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  13. Kleywegt G. J. Validation of protein models from Calpha coordinates alone. J Mol Biol. 1997 Oct 24;273(2):371–376. doi: 10.1006/jmbi.1997.1309. [DOI] [PubMed] [Google Scholar]
  14. Kozielski F., De Bonis S., Burmeister W. P., Cohen-Addad C., Wade R. H. The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Structure. 1999 Nov 15;7(11):1407–1416. doi: 10.1016/s0969-2126(00)80030-1. [DOI] [PubMed] [Google Scholar]
  15. Krueger J. K., Olah G. A., Rokop S. E., Zhi G., Stull J. T., Trewhella J. Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study. Biochemistry. 1997 May 20;36(20):6017–6023. doi: 10.1021/bi9702703. [DOI] [PubMed] [Google Scholar]
  16. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
  17. Lim K., Ho J. X., Keeling K., Gilliland G. L., Ji X., Rüker F., Carter D. C. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci. 1994 Dec;3(12):2233–2244. doi: 10.1002/pro.5560031209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Logan D. T., Su X. D., Aberg A., Regnström K., Hajdu J., Eklund H., Nordlund P. Crystal structure of reduced protein R2 of ribonucleotide reductase: the structural basis for oxygen activation at a dinuclear iron site. Structure. 1996 Sep 15;4(9):1053–1064. doi: 10.1016/s0969-2126(96)00112-8. [DOI] [PubMed] [Google Scholar]
  19. McTigue M. A., Williams D. R., Tainer J. A. Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol. 1995 Feb 10;246(1):21–27. doi: 10.1006/jmbi.1994.0061. [DOI] [PubMed] [Google Scholar]
  20. Mendelson R., Morris E. P. The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8533–8538. doi: 10.1073/pnas.94.16.8533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyazawa S., Jernigan R. L. Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins. 1999 Jan 1;34(1):49–68. doi: 10.1002/(sici)1097-0134(19990101)34:1<49::aid-prot5>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  22. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  23. Parker M. W., Lo Bello M., Federici G. Crystallization of glutathione S-transferase from human placenta. J Mol Biol. 1990 May 20;213(2):221–222. doi: 10.1016/s0022-2836(05)80183-4. [DOI] [PubMed] [Google Scholar]
  24. Perera L., Foley C., Darden T. A., Stafford D., Mather T., Esmon C. T., Pedersen L. G. Modeling zymogen protein C. Biophys J. 2000 Dec;79(6):2925–2943. doi: 10.1016/S0006-3495(00)76530-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sawaya M. R., Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry. 1997 Jan 21;36(3):586–603. doi: 10.1021/bi962337c. [DOI] [PubMed] [Google Scholar]
  26. Sayers Z., Brouillon P., Svergun D. I., Zielenkiewicz P., Koch M. H. Biochemical and structural characterization of recombinant copper-metallothionein from Saccharomyces cerevisiae. Eur J Biochem. 1999 Jun;262(3):858–865. doi: 10.1046/j.1432-1327.1999.00451.x. [DOI] [PubMed] [Google Scholar]
  27. Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
  28. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  29. Svergun D. I., Aldag I., Sieck T., Altendorf K., Koch M. H., Kane D. J., Kozin M. B., Grüber G. A model of the quaternary structure of the Escherichia coli F1 ATPase from X-ray solution scattering and evidence for structural changes in the delta subunit during ATP hydrolysis. Biophys J. 1998 Nov;75(5):2212–2219. doi: 10.1016/S0006-3495(98)77665-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Svergun D. I., Barberato C., Koch M. H., Fetler L., Vachette P. Large differences are observed between the crystal and solution quaternary structures of allosteric aspartate transcarbamylase in the R state. Proteins. 1997 Jan;27(1):110–117. [PubMed] [Google Scholar]
  31. Svergun D. I., Nierhaus K. H. A map of protein-rRNA distribution in the 70 S Escherichia coli ribosome. J Biol Chem. 2000 May 12;275(19):14432–14439. doi: 10.1074/jbc.275.19.14432. [DOI] [PubMed] [Google Scholar]
  32. Svergun D. I., Petoukhov M. V., Koch M. H. Determination of domain structure of proteins from X-ray solution scattering. Biophys J. 2001 Jun;80(6):2946–2953. doi: 10.1016/S0006-3495(01)76260-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Svergun D. I., Petoukhov M. V., Koch M. H., König S. Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J Biol Chem. 2000 Jan 7;275(1):297–302. doi: 10.1074/jbc.275.1.297. [DOI] [PubMed] [Google Scholar]
  34. Svergun D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999 Jun;76(6):2879–2886. doi: 10.1016/S0006-3495(99)77443-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Svergun D. I., Richard S., Koch M. H., Sayers Z., Kuprin S., Zaccai G. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2267–2272. doi: 10.1073/pnas.95.5.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Svergun D. I., Zaccai G., Malfois M., Wade R. H., Koch M. H., Kozielski F. Conformation of the Drosophila motor protein non-claret disjunctional in solution from X-ray and neutron scattering. J Biol Chem. 2001 May 2;276(27):24826–24832. doi: 10.1074/jbc.M103618200. [DOI] [PubMed] [Google Scholar]
  37. Thomas P. D., Dill K. A. An iterative method for extracting energy-like quantities from protein structures. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11628–11633. doi: 10.1073/pnas.93.21.11628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ware S., Donahue J. P., Hawiger J., Anderson W. F. Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization. Protein Sci. 1999 Dec;8(12):2663–2671. doi: 10.1110/ps.8.12.2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang Z., Devarajan P., Dorfman A. L., Morrow J. S. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem. 1998 Jul 24;273(30):18681–18684. doi: 10.1074/jbc.273.30.18681. [DOI] [PubMed] [Google Scholar]
  40. Zheng Wenjun, Doniach Sebastian. Protein structure prediction constrained by solution X-ray scattering data and structural homology identification. J Mol Biol. 2002 Feb 8;316(1):173–187. doi: 10.1006/jmbi.2001.5324. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES