Abstract
Hydrated monoolein forms the cubic-Pn3m mesophase that has been used for in meso crystallization of membrane proteins. The crystals have subsequently provided high-resolution structures by crystallographic means. It is possible that the hosting cubic phase created by monoolein alone, which itself is not a common membrane component, will limit the range of membrane proteins crystallizable by the in meso method. With a view to expanding the range of applicability of the method, we investigated by x-ray diffraction the degree to which the reference cubic-Pn3m phase formed by hydrated monoolein could be modified by other lipid types. These included phosphatidylcholine (PC), phosphatidylethanolamine, phosphatidylserine, cardiolipin, lyso-PC, a polyethylene glycol-lipid, 2-monoolein, oleamide, and cholesterol. The results show that all nine lipids were accommodated in the cubic phase to some extent without altering phase identity. The positional isomer, 2-monoolein, was tolerated to the highest level. The least well tolerated were the anionic lipids, followed by lyso-PC. The others were accommodated to the extent of 20-25 mol %. Beyond a certain concentration limit, the lipid additives either triggered one or a series of phase transitions or saturated the phase and separated out as crystals, as seen with oleamide and cholesterol. The series of phases observed and their order of appearance were consistent with expectations in terms of interfacial curvature changes. The changes in phase type and microstructure have been rationalized on the basis of lipid molecular shape, interfacial curvature, and chain packing energy. The data should prove useful in the rational design of cubic phase crystallization matrices with different lipid profiles that match the needs of a greater range of membrane proteins.
Full Text
The Full Text of this article is available as a PDF (618.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aota-Nakano Y., Li S. J., Yamazaki M. Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochim Biophys Acta. 1999 Nov 9;1461(1):96–102. doi: 10.1016/s0005-2736(99)00156-x. [DOI] [PubMed] [Google Scholar]
- Arvidson G., Brentel I., Khan A., Lindblom G., Fontell K. Phase equilibria in four lysophosphatidylcholine/water systems. Exceptional behaviour of 1-palmitoyl-glycerophosphocholine. Eur J Biochem. 1985 Nov 4;152(3):753–759. doi: 10.1111/j.1432-1033.1985.tb09257.x. [DOI] [PubMed] [Google Scholar]
- Boger D. L., Henriksen S. J., Cravatt B. F. Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Curr Pharm Des. 1998 Aug;4(4):303–314. [PubMed] [Google Scholar]
- Brzustowicz Michael R., Cherezov Vadim, Caffrey Martin, Stillwell William, Wassall Stephen R. Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation. Biophys J. 2002 Jan;82(1 Pt 1):285–298. doi: 10.1016/S0006-3495(02)75394-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caffrey M. A lipid's eye view of membrane protein crystallization in mesophases. Curr Opin Struct Biol. 2000 Aug;10(4):486–497. doi: 10.1016/s0959-440x(00)00119-6. [DOI] [PubMed] [Google Scholar]
- Caffrey M. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. Biochemistry. 1987 Oct 6;26(20):6349–6363. doi: 10.1021/bi00394a008. [DOI] [PubMed] [Google Scholar]
- Caffrey M. The combined and separate effects of low temperature and freezing on membrane lipid mesomorphic phase behavior: relevance to cryobiology. Biochim Biophys Acta. 1987 Jan 9;896(1):123–127. doi: 10.1016/0005-2736(87)90365-8. [DOI] [PubMed] [Google Scholar]
- Cheng A., Hummel B., Qiu H., Caffrey M. A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids. 1998 Sep;95(1):11–21. doi: 10.1016/s0009-3084(98)00060-7. [DOI] [PubMed] [Google Scholar]
- Cherezov V., Fersi H., Caffrey M. Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J. 2001 Jul;81(1):225–242. doi: 10.1016/S0006-3495(01)75694-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherezov Vadim, Qiu Hong, Pector Veronique, Vandenbranden Michel, Ruysschaert Jean-Marie, Caffrey Martin. Biophysical and transfection studies of the diC(14)-amidine/DNA complex. Biophys J. 2002 Jun;82(6):3105–3117. doi: 10.1016/S0006-3495(02)75652-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherezov Vadim, Riedl Ken M., Caffrey Martin. Too hot to handle? Synchrotron X-ray damage of lipid membranes and mesophases. J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):333–341. doi: 10.1107/s0909049502014528. [DOI] [PubMed] [Google Scholar]
- Chiu M. L., Nollert P., Loewen M. C., Belrhali H., Pebay-Peyroula E., Rosenbusch J. P., Landau E. M. Crystallization in cubo: general applicability to membrane proteins. Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):781–784. doi: 10.1107/s0907444900004716. [DOI] [PubMed] [Google Scholar]
- Craven B. M. Crystal structure of cholesterol monohydrate. Nature. 1976 Apr 22;260(5553):727–729. doi: 10.1038/260727a0. [DOI] [PubMed] [Google Scholar]
- Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., Landau E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature. 1999 Oct 21;401(6755):822–826. doi: 10.1038/44623. [DOI] [PubMed] [Google Scholar]
- Edman Karl, Royant Antoine, Nollert Peter, Maxwell Carrie A., Pebay-Peyroula Eva, Navarro Javier, Neutze Richard, Landau Ehud M. Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure. 2002 Apr;10(4):473–482. doi: 10.1016/s0969-2126(02)00736-0. [DOI] [PubMed] [Google Scholar]
- Facciotti M. T., Rouhani S., Burkard F. T., Betancourt F. M., Downing K. H., Rose R. B., McDermott G., Glaeser R. M. Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle. Biophys J. 2001 Dec;81(6):3442–3455. doi: 10.1016/S0006-3495(01)75976-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
- Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994 Jan;69(1):1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
- Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. J., Yamashita Y., Yamazaki M. Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. Biophys J. 2001 Aug;81(2):983–993. doi: 10.1016/S0006-3495(01)75756-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis C. R., Shipley G. G., Small D. M. The phase behavior of hydrated cholesterol. J Lipid Res. 1979 May;20(4):525–535. [PubMed] [Google Scholar]
- Luecke H., Schobert B., Cartailler J. P., Richter H. T., Rosengarth A., Needleman R., Lanyi J. K. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol. 2000 Jul 28;300(5):1237–1255. doi: 10.1006/jmbi.2000.3884. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Lanyi J. K., Spudich E. N., Spudich J. L. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science. 2001 Jul 12;293(5534):1499–1503. doi: 10.1126/science.1062977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
- Misquitta Y., Caffrey M. Rational design of lipid molecular structure: a case study involving the C19:1c10 monoacylglycerol. Biophys J. 2001 Aug;81(2):1047–1058. doi: 10.1016/S0006-3495(01)75762-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson A., Holmgren A., Lindblom G. Fourier-transform infrared spectroscopy study of dioleoylphosphatidylcholine and monooleoylglycerol in lamellar and cubic liquid crystals. Biochemistry. 1991 Feb 26;30(8):2126–2133. doi: 10.1021/bi00222a017. [DOI] [PubMed] [Google Scholar]
- Nollert P., Qiu H., Caffrey M., Rosenbusch J. P., Landau E. M. Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett. 2001 Aug 31;504(3):179–186. doi: 10.1016/s0014-5793(01)02747-8. [DOI] [PubMed] [Google Scholar]
- Pebay-Peyroula E., Neutze R., Landau E. M. Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle. Biochim Biophys Acta. 2000 Aug 30;1460(1):119–132. doi: 10.1016/s0005-2728(00)00134-1. [DOI] [PubMed] [Google Scholar]
- Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
- Qiu H., Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000 Feb;21(3):223–234. doi: 10.1016/s0142-9612(99)00126-x. [DOI] [PubMed] [Google Scholar]
- Rouhani S., Cartailler J. P., Facciotti M. T., Walian P., Needleman R., Lanyi J. K., Glaeser R. M., Luecke H. Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. J Mol Biol. 2001 Oct 26;313(3):615–628. doi: 10.1006/jmbi.2001.5066. [DOI] [PubMed] [Google Scholar]
- Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., Neutze R. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):645–648. doi: 10.1038/35020599. [DOI] [PubMed] [Google Scholar]
- Royant A., Nollert P., Edman K., Neutze R., Landau E. M., Pebay-Peyroula E., Navarro J. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10131–10136. doi: 10.1073/pnas.181203898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sass H. J., Büldt G., Gessenich R., Hehn D., Neff D., Schlesinger R., Berendzen J., Ormos P. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):649–653. doi: 10.1038/35020607. [DOI] [PubMed] [Google Scholar]
- Shieh H. S., Hoard L. G., Nordman C. E. Crystal structure of anhydrous cholesterol. Nature. 1977 May 19;267(5608):287–289. doi: 10.1038/267287a0. [DOI] [PubMed] [Google Scholar]
- Tate M. W., Gruner S. M. Temperature dependence of the structural dimensions of the inverted hexagonal (HII) phase of phosphatidylethanolamine-containing membranes. Biochemistry. 1989 May 16;28(10):4245–4253. doi: 10.1021/bi00436a019. [DOI] [PubMed] [Google Scholar]
- Zhu T., Caffrey M. Thermodynamic, thermomechanical, and structural properties of a hydrated asymmetric phosphatidylcholine. Biophys J. 1993 Aug;65(2):939–954. doi: 10.1016/S0006-3495(93)81108-1. [DOI] [PMC free article] [PubMed] [Google Scholar]