Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):321–334. doi: 10.1016/S0006-3495(02)75397-6

Role of the DNase-I-binding loop in dynamic properties of actin filament.

Sofia Yu Khaitlina 1, Hanna Strzelecka-Gołaszewska 1
PMCID: PMC1302472  PMID: 11751319

Abstract

Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.

Full Text

The Full Text of this article is available as a PDF (587.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASAKURA S., OOSAWA F. Dephosphorylation of adenosine triphosphate in actin solutions at low concentrations of magnesium. Arch Biochem Biophys. 1960 Apr;87:273–280. doi: 10.1016/0003-9861(60)90172-7. [DOI] [PubMed] [Google Scholar]
  2. Belmont L. D., Orlova A., Drubin D. G., Egelman E. H. A change in actin conformation associated with filament instability after Pi release. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):29–34. doi: 10.1073/pnas.96.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borovikov Y. S., Moraczewska J., Khoroshev M. I., Strzelecka-Gołaszewska H. Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding. Biochim Biophys Acta. 2000 Mar 16;1478(1):138–151. doi: 10.1016/s0167-4838(00)00005-4. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. L., Korn E. D. Evidence that F-actin can hydrolyze ATP independent of monomer-polymer end interactions. J Biol Chem. 1984 Feb 10;259(3):1441–1446. [PubMed] [Google Scholar]
  5. Brenner S. L., Korn E. D. On the mechanism of actin monomer-polymer subunit exchange at steady state. J Biol Chem. 1983 Apr 25;258(8):5013–5020. [PubMed] [Google Scholar]
  6. Brenner S. L., Korn E. D. Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. J Biol Chem. 1981 Aug 25;256(16):8663–8670. [PubMed] [Google Scholar]
  7. Byers H. R., White G. E., Fujiwara K. Organization and function of stress fibers in cells in vitro and in situ. A review. Cell Muscle Motil. 1984;5:83–137. doi: 10.1007/978-1-4684-4592-3_2. [DOI] [PubMed] [Google Scholar]
  8. Carlier M. F. Control of actin dynamics. Curr Opin Cell Biol. 1998 Feb;10(1):45–51. doi: 10.1016/s0955-0674(98)80085-9. [DOI] [PubMed] [Google Scholar]
  9. Carlier M. F., Pantaloni D., Korn E. D. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. J Biol Chem. 1984 Aug 25;259(16):9983–9986. [PubMed] [Google Scholar]
  10. Carlier M. F., Pantaloni D., Korn E. D. The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J Biol Chem. 1986 Aug 15;261(23):10785–10792. [PubMed] [Google Scholar]
  11. Carlier M. F., Pantaloni D., Korn E. D. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. J Biol Chem. 1987 Mar 5;262(7):3052–3059. [PubMed] [Google Scholar]
  12. Carlier M. F. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol. 1989;115:139–170. doi: 10.1016/s0074-7696(08)60629-4. [DOI] [PubMed] [Google Scholar]
  13. Chen H., Bernstein B. W., Bamburg J. R. Regulating actin-filament dynamics in vivo. Trends Biochem Sci. 2000 Jan;25(1):19–23. doi: 10.1016/s0968-0004(99)01511-x. [DOI] [PubMed] [Google Scholar]
  14. Chen X., Rubenstein P. A. A mutation in an ATP-binding loop of Saccharomyces cerevisiae actin (S14A) causes a temperature-sensitive phenotype in vivo and in vitro. J Biol Chem. 1995 May 12;270(19):11406–11414. doi: 10.1074/jbc.270.19.11406. [DOI] [PubMed] [Google Scholar]
  15. Chik J. K., Lindberg U., Schutt C. E. The structure of an open state of beta-actin at 2.65 A resolution. J Mol Biol. 1996 Nov 8;263(4):607–623. doi: 10.1006/jmbi.1996.0602. [DOI] [PubMed] [Google Scholar]
  16. Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Drewes G., Faulstich H. Cooperative effects on filament stability in actin modified at the C-terminus by substitution or truncation. Eur J Biochem. 1993 Feb 15;212(1):247–253. doi: 10.1111/j.1432-1033.1993.tb17656.x. [DOI] [PubMed] [Google Scholar]
  18. Drewes G., Faulstich H. The enhanced ATPase activity of glutathione-substituted actin provides a quantitative approach to filament stabilization. J Biol Chem. 1990 Feb 25;265(6):3017–3021. [PubMed] [Google Scholar]
  19. Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
  20. Frieden C., Patane K. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP. Biochemistry. 1985 Jul 16;24(15):4192–4196. doi: 10.1021/bi00336a056. [DOI] [PubMed] [Google Scholar]
  21. Gershman L. C., Selden L. A., Kinosian H. J., Estes J. E. Preparation and polymerization properties of monomeric ADP-actin. Biochim Biophys Acta. 1989 Apr 6;995(2):109–115. doi: 10.1016/0167-4838(89)90068-x. [DOI] [PubMed] [Google Scholar]
  22. Hegyi G., Premecz G., Sain B., Mühlrád A. Selective carbethoxylation of the histidine residues of actin by diethylpyrocarbonate. Eur J Biochem. 1974 May 2;44(1):7–12. doi: 10.1111/j.1432-1033.1974.tb03452.x. [DOI] [PubMed] [Google Scholar]
  23. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  24. Houk T. W., Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974 Nov;62(1):66–74. doi: 10.1016/0003-2697(74)90367-4. [DOI] [PubMed] [Google Scholar]
  25. Isambert H., Venier P., Maggs A. C., Fattoum A., Kassab R., Pantaloni D., Carlier M. F. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem. 1995 May 12;270(19):11437–11444. doi: 10.1074/jbc.270.19.11437. [DOI] [PubMed] [Google Scholar]
  26. Jacobson G. R., Rosenbusch J. P. ATP binding to a protease-resistant core of actin. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2742–2746. doi: 10.1073/pnas.73.8.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  28. Khaitlina SYu, Collins J. H., Kuznetsova I. M., Pershina V. P., Synakevich I. G., Turoverov K. K., Usmanova A. M. Physico-chemical properties of actin cleaved with bacterial protease from E. coli A2 strain. FEBS Lett. 1991 Feb 11;279(1):49–51. doi: 10.1016/0014-5793(91)80247-z. [DOI] [PubMed] [Google Scholar]
  29. Khaitlina S. Y. Functional specificity of actin isoforms. Int Rev Cytol. 2001;202:35–98. doi: 10.1016/s0074-7696(01)02003-4. [DOI] [PubMed] [Google Scholar]
  30. Khaitlina S. Y., Moraczewska J., Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993 Dec 15;218(3):911–920. doi: 10.1111/j.1432-1033.1993.tb18447.x. [DOI] [PubMed] [Google Scholar]
  31. Kim E., Miller C. J., Reisler E. Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal alpha-actin. Biochemistry. 1996 Dec 24;35(51):16566–16572. doi: 10.1021/bi9623892. [DOI] [PubMed] [Google Scholar]
  32. Kim E., Motoki M., Seguro K., Muhlrad A., Reisler E. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41. Biophys J. 1995 Nov;69(5):2024–2032. doi: 10.1016/S0006-3495(95)80072-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kodama T., Fukui K., Kometani K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem. 1986 May;99(5):1465–1472. doi: 10.1093/oxfordjournals.jbchem.a135616. [DOI] [PubMed] [Google Scholar]
  34. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  35. Kuehl W. M., Gergely J. The kinetics of exchange of adenosine triphosphate and calcium with G-actin. J Biol Chem. 1969 Sep 10;244(17):4720–4729. [PubMed] [Google Scholar]
  36. Kuznetsova I., Antropova O., Turoverov K., Khaitlina S. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS. FEBS Lett. 1996 Mar 25;383(1-2):105–108. doi: 10.1016/0014-5793(96)00238-4. [DOI] [PubMed] [Google Scholar]
  37. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  38. Lasa I., Dehoux P., Cossart P. Actin polymerization and bacterial movement. Biochim Biophys Acta. 1998 Apr 24;1402(3):217–228. doi: 10.1016/s0167-4889(98)00009-3. [DOI] [PubMed] [Google Scholar]
  39. Littlefield R., Fowler V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu Rev Cell Dev Biol. 1998;14:487–525. doi: 10.1146/annurev.cellbio.14.1.487. [DOI] [PubMed] [Google Scholar]
  40. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  41. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  42. Miki M., Onuma H., Mihashi K. Interaction of actin water epsilon-ATP. FEBS Lett. 1974 Sep 15;46(1):17–19. doi: 10.1016/0014-5793(74)80324-8. [DOI] [PubMed] [Google Scholar]
  43. Moraczewska J., Strzelecka-Gołaszewska H., Moens P. D., dos Remedios C. G. Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem J. 1996 Jul 15;317(Pt 2):605–611. doi: 10.1042/bj3170605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moraczewska J., Wawro B., Seguro K., Strzelecka-Golaszewska H. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J. 1999 Jul;77(1):373–385. doi: 10.1016/S0006-3495(99)76896-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mossakowska M., Moraczewska J., Khaitlina S., Strzelecka-Golaszewska H. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem J. 1993 Feb 1;289(Pt 3):897–902. doi: 10.1042/bj2890897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Muhlrad A., Cheung P., Phan B. C., Miller C., Reisler E. Dynamic properties of actin. Structural changes induced by beryllium fluoride. J Biol Chem. 1994 Apr 22;269(16):11852–11858. [PubMed] [Google Scholar]
  47. O'Donoghue S. I., Miki M., dos Remedios C. G. Removing the two C-terminal residues of actin affects the filament structure. Arch Biochem Biophys. 1992 Feb 14;293(1):110–116. doi: 10.1016/0003-9861(92)90372-4. [DOI] [PubMed] [Google Scholar]
  48. Orlova A., Chen X., Rubenstein P. A., Egelman E. H. Modulation of yeast F-actin structure by a mutation in the nucleotide-binding cleft. J Mol Biol. 1997 Aug 15;271(2):235–243. doi: 10.1006/jmbi.1997.1163. [DOI] [PubMed] [Google Scholar]
  49. Orlova A., Egelman E. H. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol. 1992 Oct 20;227(4):1043–1053. doi: 10.1016/0022-2836(92)90520-t. [DOI] [PubMed] [Google Scholar]
  50. Orlova A., Prochniewicz E., Egelman E. H. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol. 1995 Feb 3;245(5):598–607. doi: 10.1006/jmbi.1994.0049. [DOI] [PubMed] [Google Scholar]
  51. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  52. Pollard T. D. Measurement of rate constants for actin filament elongation in solution. Anal Biochem. 1983 Oct 15;134(2):406–412. doi: 10.1016/0003-2697(83)90316-0. [DOI] [PubMed] [Google Scholar]
  53. Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986 Dec;103(6 Pt 2):2747–2754. doi: 10.1083/jcb.103.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schwyter D., Phillips M., Reisler E. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry. 1989 Jul 11;28(14):5889–5895. doi: 10.1021/bi00440a027. [DOI] [PubMed] [Google Scholar]
  55. Secrist J. A., 3rd, Barrio J. R., Leonard N. J., Weber G. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry. 1972 Sep 12;11(19):3499–3506. doi: 10.1021/bi00769a001. [DOI] [PubMed] [Google Scholar]
  56. Small J. V., Anderson K., Rottner K. Actin and the coordination of protrusion, attachment and retraction in cell crawling. Biosci Rep. 1996 Oct;16(5):351–368. doi: 10.1007/BF01207261. [DOI] [PubMed] [Google Scholar]
  57. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  58. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  59. Strzelecka-Golaszewska H. Effect of tightly bound divalent cation on the equilibria between G-actin-bound and free ATP. Eur J Biochem. 1973 Sep 3;37(3):434–440. doi: 10.1111/j.1432-1033.1973.tb03003.x. [DOI] [PubMed] [Google Scholar]
  60. Strzelecka-Golaszewska H., Wozniak A., Hult T., Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J. 1996 Jun 15;316(Pt 3):713–721. doi: 10.1042/bj3160713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Strzelecka-Gołaszewska H. Divalent cations, nucleotides, and actin structure. Results Probl Cell Differ. 2001;32:23–41. doi: 10.1007/978-3-540-46560-7_3. [DOI] [PubMed] [Google Scholar]
  62. Strzelecka-Gołaszewska H., Moraczewska J., Khaitlina S. Y., Mossakowska M. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem. 1993 Feb 1;211(3):731–742. doi: 10.1111/j.1432-1033.1993.tb17603.x. [DOI] [PubMed] [Google Scholar]
  63. Takashi R. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry. 1988 Feb 9;27(3):938–943. doi: 10.1021/bi00403a015. [DOI] [PubMed] [Google Scholar]
  64. Tilney L. G., Inoué S. Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J Cell Biol. 1982 Jun;93(3):820–827. doi: 10.1083/jcb.93.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
  67. Wegner A., Neuhaus J. M. Requirement of divalent cations for fast exchange of actin monomers and actin filament subunits. J Mol Biol. 1981 Dec 15;153(3):681–693. doi: 10.1016/0022-2836(81)90413-7. [DOI] [PubMed] [Google Scholar]
  68. Wriggers W., Schulten K. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Proteins. 1999 May 1;35(2):262–273. [PubMed] [Google Scholar]
  69. ben-Avraham D., Tirion M. M. Dynamic and elastic properties of F-actin: a normal-modes analysis. Biophys J. 1995 Apr;68(4):1231–1245. doi: 10.1016/S0006-3495(95)80299-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES