Abstract
Fluorescence line-narrowing (FLN) spectroscopy at 10 K was used to study the effect of high pressure through the prosthetic group in horseradish peroxidase (HRP), which was Mg-mesoporphyrin (MgMP) replacing the heme of the enzyme. The same measurement was performed on MgMP in a solid-state amorphous organic matrix, dimethyl sulfoxide (DMSO). Series of FLN spectra were registered to determine the (0, 0) band shape through the inhomogeneous distribution function (IDF). In the range of 0-2 GPa a red-shift of the IDF was determined, and yielded the isothermal compressibility of MgMP-HRP as 0.066 GPa(-1), which is significantly smaller than that found earlier as 0.106 GPa(-1) by fine-tuning the pressure in the range up to 1.1 MPa. The vibrational frequencies also shifted with pressure increase, as expected. The compressibility in the DMSO matrix was smaller, 0.042 GPa(-1), both when the pressure was applied at room temperature before cooling to 10 K, or at 10 K. At 200 K or above, the bimodal (0, 0) band shape in DMSO showed a population conversion under pressure that was not observed at or below 150 K. A significant atomic rearrangement was estimated from the volume change, 3.3 +/- 0.7 cm(3)/mol upon conversion. The compressibility in proteins and in amorphous solids seems not to significantly depend on the temperature and in the protein it decreases toward higher pressures.
Full Text
The Full Text of this article is available as a PDF (296.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balog E., Galántai R., Köhler M., Laberge M., Fidy J. Metal coordination influences substrate binding in horseradish peroxidase. Eur Biophys J. 2000;29(6):429–438. doi: 10.1007/s002490000084. [DOI] [PubMed] [Google Scholar]
- Balog E., Kis-Petik K., Fidy J., Köhler M., Friedrich J. Interpretation of multiple Q(0,0) bands in the absorption spectrum of Mg-mesoporphyrin embedded in horseradish peroxidase. Biophys J. 1997 Jul;73(1):397–405. doi: 10.1016/S0006-3495(97)78079-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalikian T. V., Breslauer K. J. Thermodynamic analysis of biomolecules: a volumetric approach. Curr Opin Struct Biol. 1998 Oct;8(5):657–664. doi: 10.1016/s0959-440x(98)80159-0. [DOI] [PubMed] [Google Scholar]
- Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cupane A., Leone M., Vitrano E., Cordone L. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. Eur Biophys J. 1995;23(6):385–398. doi: 10.1007/BF00196825. [DOI] [PubMed] [Google Scholar]
- Fidy J., Laberge M., Kaposi A. D., Vanderkooi J. M. Fluorescence line narrowing applied to the study of proteins. Biochim Biophys Acta. 1998 Aug 18;1386(2):331–351. doi: 10.1016/s0167-4838(98)00101-0. [DOI] [PubMed] [Google Scholar]
- Fidy J., Vanderkooi J. M., Zollfrank J., Friedrich J. Softening of the packing density of horseradish peroxidase by a H-donor bound near the heme pocket. Biophys J. 1992 Dec;63(6):1605–1612. doi: 10.1016/S0006-3495(92)81749-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forman R. A., Piermarini G. J., Barnett J. D., Block S. Pressure measurement made by the utilization of ruby sharp-line luminescence. Science. 1972 Apr 21;176(4032):284–285. doi: 10.1126/science.176.4032.284. [DOI] [PubMed] [Google Scholar]
- Gekko K. Flexibility of globular proteins in water as revealed by compressibility. Adv Exp Med Biol. 1991;302:753–771. doi: 10.1007/978-1-4899-0664-9_42. [DOI] [PubMed] [Google Scholar]
- Gekko K., Hasegawa Y. Compressibility-structure relationship of globular proteins. Biochemistry. 1986 Oct 21;25(21):6563–6571. doi: 10.1021/bi00369a034. [DOI] [PubMed] [Google Scholar]
- Goossens K., Smeller L., Frank J., Heremans K. Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy. Eur J Biochem. 1996 Feb 15;236(1):254–262. doi: 10.1111/j.1432-1033.1996.00254.x. [DOI] [PubMed] [Google Scholar]
- Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
- Heinisch O., Kowalski E., Goossens K., Frank J., Heremans K., Ludwig H., Tauscher B. Pressure effects on the stability of lipoxygenase: Fourier transform-infrared spectroscopy (FT-IR) and enzyme activity studies. Z Lebensm Unters Forsch. 1995 Dec;201(6):562–565. doi: 10.1007/BF01201586. [DOI] [PubMed] [Google Scholar]
- Heremans K., Smeller L. Protein structure and dynamics at high pressure. Biochim Biophys Acta. 1998 Aug 18;1386(2):353–370. doi: 10.1016/s0167-4838(98)00102-2. [DOI] [PubMed] [Google Scholar]
- Jonas J., Ballard L., Nash D. High-resolution, high-pressure NMR studies of proteins. Biophys J. 1998 Jul;75(1):445–452. doi: 10.1016/S0006-3495(98)77532-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
- Kaposi A. D., Vanderkooi J. M. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11371–11375. doi: 10.1073/pnas.89.23.11371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharakoz D. P., Sarvazyan A. P. Hydrational and intrinsic compressibilities of globular proteins. Biopolymers. 1993 Jan;33(1):11–26. doi: 10.1002/bip.360330103. [DOI] [PubMed] [Google Scholar]
- Kundrot C. E., Richards F. M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. J Mol Biol. 1987 Jan 5;193(1):157–170. doi: 10.1016/0022-2836(87)90634-6. [DOI] [PubMed] [Google Scholar]
- Kunugi S., Kitayaki M., Yanagi Y., Tanaka N., Lange R., Balny C. The effect of high pressure on thermolysin. Eur J Biochem. 1997 Sep 1;248(2):567–574. doi: 10.1111/j.1432-1033.1997.t01-1-00567.x. [DOI] [PubMed] [Google Scholar]
- Köhler M., Friedrich J., Fidy J. Proteins in electric fields and pressure fields: basic aspects. Biochim Biophys Acta. 1998 Aug 18;1386(2):255–288. doi: 10.1016/s0167-4838(98)00098-3. [DOI] [PubMed] [Google Scholar]
- Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Panick G., Vidugiris G. J., Malessa R., Rapp G., Winter R., Royer C. A. Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry. 1999 Mar 30;38(13):4157–4164. doi: 10.1021/bi982608e. [DOI] [PubMed] [Google Scholar]
- Ruan K., Lange R., Meersman F., Heremans K., Balny C. Fluorescence and FTIR study of the pressure-induced denaturation of bovine pancreas trypsin. Eur J Biochem. 1999 Oct 1;265(1):79–85. doi: 10.1046/j.1432-1327.1999.00665.x. [DOI] [PubMed] [Google Scholar]
- Sesselmann T, Richter W, Haarer D, Morawitz H. Spectroscopic studies of impurity-host interactions in dye-doped polymers: Hydrostatic-pressure effects versus temperature effects. Phys Rev B Condens Matter. 1987 Nov 15;36(14):7601–7611. doi: 10.1103/physrevb.36.7601. [DOI] [PubMed] [Google Scholar]
- Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
- Silva J. L., Weber G. Pressure-induced dissociation of brome mosaic virus. J Mol Biol. 1988 Jan 5;199(1):149–159. doi: 10.1016/0022-2836(88)90385-3. [DOI] [PubMed] [Google Scholar]
- Smeller L., Rubens P., Heremans K. Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochemistry. 1999 Mar 23;38(12):3816–3820. doi: 10.1021/bi981693n. [DOI] [PubMed] [Google Scholar]
- Sturgis J. N., Gall A., Ellervee A., Freiberg A., Robert B. The effect of pressure on the bacteriochlorophyll a binding sites of the core antenna complex from Rhodospirillum rubrum. Biochemistry. 1998 Oct 20;37(42):14875–14880. doi: 10.1021/bi9810003. [DOI] [PubMed] [Google Scholar]
- TEALE F. W. Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta. 1959 Oct;35:543–543. doi: 10.1016/0006-3002(59)90407-x. [DOI] [PubMed] [Google Scholar]
- Tamura Y., Gekko K. Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility. Biochemistry. 1995 Feb 14;34(6):1878–1884. doi: 10.1021/bi00006a008. [DOI] [PubMed] [Google Scholar]
- Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
- Wu H. M., Rätsep M., Young C. S., Jankowiak R., Blankenship R. E., Small G. J. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum. Biophys J. 2000 Sep;79(3):1561–1572. doi: 10.1016/S0006-3495(00)76407-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamato T., Higo J., Seno Y., Go N. Conformational deformation in deoxymyoglobin by hydrostatic pressure. Proteins. 1993 Aug;16(4):327–340. doi: 10.1002/prot.340160403. [DOI] [PubMed] [Google Scholar]
- Zhang J., Peng X., Jonas A., Jonas J. NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631–8641. doi: 10.1021/bi00027a012. [DOI] [PubMed] [Google Scholar]
- Zollfrank J., Friedrich J., Parak F. Spectral hole burning study of protoporphyrin IX substituted myoglobin. Biophys J. 1992 Mar;61(3):716–724. doi: 10.1016/S0006-3495(92)81876-3. [DOI] [PMC free article] [PubMed] [Google Scholar]