Abstract
The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function of surface tension, droplet radius, viscosity, aspiration pressure, and pipette radius. In addition, we have tabulated a dimensionless factor, M, which can be utilized to calculate the apparent viscosity of the slippery droplet. Computations were carried out using a low Reynolds number hydrodynamics transport code based on the finite-element method. Although idealized and simplistic, we find that the slippery droplet model predicts many observed features of neutrophil aspiration. However, there are certain features that are not observed in neutrophils. In particular, the model predicts dilation of the membrane past the point of being continuous, as well as a reentrant jet at high aspiration pressures.
Full Text
The Full Text of this article is available as a PDF (408.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dong C., Skalak R. Leukocyte deformability: finite element modeling of large viscoelastic deformation. J Theor Biol. 1992 Sep 21;158(2):173–193. doi: 10.1016/s0022-5193(05)80716-7. [DOI] [PubMed] [Google Scholar]
- Dong C., Skalak R., Sung K. L. Cytoplasmic rheology of passive neutrophils. Biorheology. 1991;28(6):557–567. doi: 10.3233/bir-1991-28607. [DOI] [PubMed] [Google Scholar]
- Dong C., Skalak R., Sung K. L., Schmid-Schönbein G. W., Chien S. Passive deformation analysis of human leukocytes. J Biomech Eng. 1988 Feb;110(1):27–36. doi: 10.1115/1.3108402. [DOI] [PubMed] [Google Scholar]
- Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
- Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank R. S., Tsai M. A. The behavior of human neutrophils during flow through capillary pores. J Biomech Eng. 1990 Aug;112(3):277–282. doi: 10.1115/1.2891185. [DOI] [PubMed] [Google Scholar]
- Friedman G. D., Klatsky A. L., Siegelaub A. B. The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 1974 Jun 6;290(23):1275–1278. doi: 10.1056/NEJM197406062902302. [DOI] [PubMed] [Google Scholar]
- He X., Dembo M. On the mechanics of the first cleavage division of the sea urchin egg. Exp Cell Res. 1997 Jun 15;233(2):252–273. doi: 10.1006/excr.1997.3585. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Needham D. The viscosity of neutrophils and their transit times through small pores. Biorheology. 1990;27(6):817–828. doi: 10.3233/bir-1990-27603. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Ting-Beall H. P., Beaty B. B., Needham D., Tran-Son-Tay R. Viscosity of passive human neutrophils undergoing small deformations. Biophys J. 1993 May;64(5):1596–1601. doi: 10.1016/S0006-3495(93)81530-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Hochmuth R. M. A sensitive measure of surface stress in the resting neutrophil. Biophys J. 1992 Jun;61(6):1664–1670. doi: 10.1016/S0006-3495(92)81970-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Hochmuth R. M. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng. 1990 Aug;112(3):269–276. doi: 10.1115/1.2891184. [DOI] [PubMed] [Google Scholar]
- Prentice R. L., Szatrowski T. P., Fujikura T., Kato H., Mason M. W., Hamilton H. H. Leukocyte counts and coronary heart disease in a Japanese cohort. Am J Epidemiol. 1982 Sep;116(3):496–509. doi: 10.1093/oxfordjournals.aje.a113434. [DOI] [PubMed] [Google Scholar]
- Schmid-Schönbein G. W., Engler R. L. Granulocytes as active participants in acute myocardial ischemia and infarction. Am J Cardiovasc Pathol. 1987 Jan;1(1):15–30. [PubMed] [Google Scholar]
- Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao J. Y., Hochmuth R. M. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 microns. Microcirculation. 1997 Mar;4(1):61–74. doi: 10.3109/10739689709148318. [DOI] [PubMed] [Google Scholar]
- Simon S. I., Schmid-Schönbein G. W. Biophysical aspects of microsphere engulfment by human neutrophils. Biophys J. 1988 Feb;53(2):163–173. doi: 10.1016/S0006-3495(88)83078-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung K. L., Dong C., Schmid-Schönbein G. W., Chien S., Skalak R. Leukocyte relaxation properties. Biophys J. 1988 Aug;54(2):331–336. doi: 10.1016/S0006-3495(88)82963-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton D. W., Schmid-Schönbein G. W. Elevation of organ resistance due to leukocyte perfusion. Am J Physiol. 1992 Jun;262(6 Pt 2):H1646–H1650. doi: 10.1152/ajpheart.1992.262.6.H1646. [DOI] [PubMed] [Google Scholar]
- Theret D. P., Levesque M. J., Sato M., Nerem R. M., Wheeler L. T. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng. 1988 Aug;110(3):190–199. doi: 10.1115/1.3108430. [DOI] [PubMed] [Google Scholar]
- Ting-Beall H. P., Needham D., Hochmuth R. M. Volume and osmotic properties of human neutrophils. Blood. 1993 May 15;81(10):2774–2780. [PubMed] [Google Scholar]
- Tran-Son-Tay R., Needham D., Yeung A., Hochmuth R. M. Time-dependent recovery of passive neutrophils after large deformation. Biophys J. 1991 Oct;60(4):856–866. doi: 10.1016/S0006-3495(91)82119-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai M. A., Frank R. S., Waugh R. E. Passive mechanical behavior of human neutrophils: power-law fluid. Biophys J. 1993 Nov;65(5):2078–2088. doi: 10.1016/S0006-3495(93)81238-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai M. A., Waugh R. E., Keng P. C. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys J. 1998 Jun;74(6):3282–3291. doi: 10.1016/S0006-3495(98)78035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeung A., Evans E. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J. 1989 Jul;56(1):139–149. doi: 10.1016/S0006-3495(89)82659-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhelev D. V., Hochmuth R. M. Mechanically stimulated cytoskeleton rearrangement and cortical contraction in human neutrophils. Biophys J. 1995 May;68(5):2004–2014. doi: 10.1016/S0006-3495(95)80377-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhelev D. V., Needham D., Hochmuth R. M. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys J. 1994 Aug;67(2):696–705. doi: 10.1016/S0006-3495(94)80529-6. [DOI] [PMC free article] [PubMed] [Google Scholar]