Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):233–245. doi: 10.1016/S0006-3495(99)77192-4

State-dependent cocaine block of sodium channel isoforms, chimeras, and channels coexpressed with the beta1 subunit.

S N Wright 1, S Y Wang 1, Y F Xiao 1, G K Wang 1
PMCID: PMC1302514  PMID: 9876137

Abstract

Cocaine block of human cardiac (hH1) and rat skeletal (mu1) muscle sodium channels was examined under whole-cell voltage clamp in transiently transfected HEK293t cells. Low affinity block of resting mu1 and hH1 channels at -180 mV was the same, and high affinity block of inactivated channels at -70 mV was the same. Cocaine block of hH1 channels was greater than block of mu1 channels at voltages between -120 mV and -90 mV, suggesting that greater steady-state inactivation of hH1 channels in this voltage range makes them more susceptible to cocaine block. We induced shifts in the voltage dependence of steady-state inactivation at mu1 and hH1 channels by constructing mu1/hH1 channel chimeras or by coexpressing the wild-type channels with the rat brain beta1 subunit. In contrast to several previous reports, coexpression of the rat brain beta1 subunit with mu1 or hH1 produced large positive shifts in steady-state inactivation. Shifts in the voltage dependence of steady-state inactivation elicited linear shifts in steady-state cocaine block, yet these manipulations did not affect the cocaine affinity of resting or inactivated channels. These data, as well as simulations used to predict block, indicate that state-dependent cocaine block depends on both steady-state inactivation and channel activation, although inactivation appears to have the predominant role.

Full Text

The Full Text of this article is available as a PDF (172.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benzinger G. R., Drum C. L., Chen L. Q., Kallen R. G., Hanck D. A., Hanck D. Differences in the binding sites of two site-3 sodium channel toxins. Pflugers Arch. 1997 Nov;434(6):742–749. doi: 10.1007/s004240050460. [DOI] [PubMed] [Google Scholar]
  3. Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 1993 Feb;10(2):317–326. doi: 10.1016/0896-6273(93)90321-h. [DOI] [PubMed] [Google Scholar]
  4. Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
  5. Chahine M., Deschene I., Chen L. Q., Kallen R. G. Electrophysiological characteristics of cloned skeletal and cardiac muscle sodium channels. Am J Physiol. 1996 Aug;271(2 Pt 2):H498–H506. doi: 10.1152/ajpheart.1996.271.2.H498. [DOI] [PubMed] [Google Scholar]
  6. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  7. Crumb W. J., Jr, Clarkson C. W. Characterization of cocaine-induced block of cardiac sodium channels. Biophys J. 1990 Mar;57(3):589–599. doi: 10.1016/S0006-3495(90)82574-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cukierman S. Regulation of voltage-dependent sodium channels. J Membr Biol. 1996 Jun;151(3):203–214. doi: 10.1007/s002329900071. [DOI] [PubMed] [Google Scholar]
  9. Fozzard H. A., Hanck D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev. 1996 Jul;76(3):887–926. doi: 10.1152/physrev.1996.76.3.887. [DOI] [PubMed] [Google Scholar]
  10. Frelin C., Cognard C., Vigne P., Lazdunski M. Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+. Eur J Pharmacol. 1986 Mar 18;122(2):245–250. doi: 10.1016/0014-2999(86)90109-3. [DOI] [PubMed] [Google Scholar]
  11. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  16. Isom L. L., Scheuer T., Brownstein A. B., Ragsdale D. S., Murphy B. J., Catterall W. A. Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. J Biol Chem. 1995 Feb 17;270(7):3306–3312. doi: 10.1074/jbc.270.7.3306. [DOI] [PubMed] [Google Scholar]
  17. Makielski J. C., Limberis J. T., Chang S. Y., Fan Z., Kyle J. W. Coexpression of beta 1 with cardiac sodium channel alpha subunits in oocytes decreases lidocaine block. Mol Pharmacol. 1996 Jan;49(1):30–39. [PubMed] [Google Scholar]
  18. Makita N., Bennett P. B., Jr, George A. L., Jr Multiple domains contribute to the distinct inactivation properties of human heart and skeletal muscle Na+ channels. Circ Res. 1996 Feb;78(2):244–252. doi: 10.1161/01.res.78.2.244. [DOI] [PubMed] [Google Scholar]
  19. Marcotte P., Chen L. Q., Kallen R. G., Chahine M. Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. Circ Res. 1997 Mar;80(3):363–369. doi: 10.1161/01.res.80.3.363. [DOI] [PubMed] [Google Scholar]
  20. Mitrovic N., George A. L., Jr, Horn R. Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol. 1998 Mar;111(3):451–462. doi: 10.1085/jgp.111.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nuss H. B., Chiamvimonvat N., Pérez-García M. T., Tomaselli G. F., Marbán E. Functional association of the beta 1 subunit with human cardiac (hH1) and rat skeletal muscle (mu 1) sodium channel alpha subunits expressed in Xenopus oocytes. J Gen Physiol. 1995 Dec;106(6):1171–1191. doi: 10.1085/jgp.106.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nuss H. B., Tomaselli G. F., Marbán E. Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J Gen Physiol. 1995 Dec;106(6):1193–1209. doi: 10.1085/jgp.106.6.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Leary M. E., Chen L. Q., Kallen R. G., Horn R. A molecular link between activation and inactivation of sodium channels. J Gen Physiol. 1995 Oct;106(4):641–658. doi: 10.1085/jgp.106.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Qu Y., Isom L. L., Westenbroek R. E., Rogers J. C., Tanada T. N., McCormick K. A., Scheuer T., Catterall W. A. Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem. 1995 Oct 27;270(43):25696–25701. doi: 10.1074/jbc.270.43.25696. [DOI] [PubMed] [Google Scholar]
  25. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  26. Starmer C. F., Grant A. O., Strauss H. C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984 Jul;46(1):15–27. doi: 10.1016/S0006-3495(84)83994-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tomaselli G. F., Chiamvimonvat N., Nuss H. B., Balser J. R., Pérez-García M. T., Xu R. H., Orias D. W., Backx P. H., Marban E. A mutation in the pore of the sodium channel alters gating. Biophys J. 1995 May;68(5):1814–1827. doi: 10.1016/S0006-3495(95)80358-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  29. Wang D. W., George A. L., Jr, Bennett P. B. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J. 1996 Jan;70(1):238–245. doi: 10.1016/S0006-3495(96)79566-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang D. W., Nie L., George A. L., Jr, Bennett P. B. Distinct local anesthetic affinities in Na+ channel subtypes. Biophys J. 1996 Apr;70(4):1700–1708. doi: 10.1016/S0006-3495(96)79732-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang S. Y., Wang G. K. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys J. 1997 Apr;72(4):1633–1640. doi: 10.1016/S0006-3495(97)78809-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wright S. N., Wang S. Y., Kallen R. G., Wang G. K. Differences in steady-state inactivation between Na channel isoforms affect local anesthetic binding affinity. Biophys J. 1997 Aug;73(2):779–788. doi: 10.1016/S0006-3495(97)78110-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yeh J. Z., Tanguy J. Na channel activation gate modulates slow recovery from use-dependent block by local anesthetics in squid giant axons. Biophys J. 1985 May;47(5):685–694. doi: 10.1016/S0006-3495(85)83965-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zamponi G. W., Doyle D. D., French R. J. State-dependent block underlies the tissue specificity of lidocaine action on batrachotoxin-activated cardiac sodium channels. Biophys J. 1993 Jul;65(1):91–100. doi: 10.1016/S0006-3495(93)81043-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zamponi G. W., French R. J. Dissecting lidocaine action: diethylamide and phenol mimic separate modes of lidocaine block of sodium channels from heart and skeletal muscle. Biophys J. 1993 Dec;65(6):2335–2347. doi: 10.1016/S0006-3495(93)81292-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES