Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):1015–1023. doi: 10.1016/S0006-3495(98)74026-3

Analysis of various sequence-specific triplexes by electron and atomic force microscopies.

D I Cherny 1, A Fourcade 1, F Svinarchuk 1, P E Nielsen 1, C Malvy 1, E Delain 1
PMCID: PMC1302582  PMID: 9533714

Abstract

Sequence-specific interactions of 20-mer G,A-containing triple helix-forming oligonucleotides (TFOs) and bis-PNAs (peptide nucleic acids) with double-stranded DNA was visualized by electron (EM) and atomic force (AFM) microscopies. Triplexes formed by biotinylated TFOs are easily detected by both EM and AFM in which streptavidin is a marker. AFM images of the unlabeled triplex within a long plasmid DNA show a approximately 0.4-nm height increment of the double helix within the target site position. TFOs conjugated to a 74-nt-long oligonucleotide forming a 33-bp-long hairpin form extremely stable triplexes with the target site that are readily imaged by both EM and AFM as protruding DNA. The short duplex protrudes in a perpendicular direction relative to the double helix axis, either in the plane of the support or out of it. In the latter case, the apparent height of the protrusion is approximately 1.5 nm, when that of the triplex site is increased by 0.3-0.4 nm. Triplex formation by bis-PNA, in which two decamers of PNA are connected via a flexible linker, causes deformations of the double helix at the target site, which is readily detected as kinks by both EM and AFM. Moreover, AFM shows that these kinks are often accompanied by an increase in the DNA apparent height of approximately 35%. This work shows the first direct visualization of sequence-specific interaction of TFOs and PNAs, with their target sequences within long plasmid DNAs, through the measurements of the apparent height of the DNA double helix by AFM.

Full Text

The Full Text of this article is available as a PDF (538.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  2. Betts L., Josey J. A., Veal J. M., Jordan S. R. A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science. 1995 Dec 15;270(5243):1838–1841. doi: 10.1126/science.270.5243.1838. [DOI] [PubMed] [Google Scholar]
  3. Bouziane M., Cherny D. I., Mouscadet J. F., Auclair C. Alternate strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J Biol Chem. 1996 Apr 26;271(17):10359–10364. doi: 10.1074/jbc.271.17.10359. [DOI] [PubMed] [Google Scholar]
  4. Brack C. DNA electron microscopy. CRC Crit Rev Biochem. 1981;10(2):113–169. doi: 10.3109/10409238109114551. [DOI] [PubMed] [Google Scholar]
  5. Cherney D. I., Kurakin A. V., Lyamichev V. I., Frank-Kamenetskii M. D., Zinkevich V. E., Firman K., Nielsen P. E. Electron microscopic studies of sequence-specific recognition of duplex DNA by different ligands. J Mol Recognit. 1994 Sep;7(3):171–176. doi: 10.1002/jmr.300070304. [DOI] [PubMed] [Google Scholar]
  6. Cherny D. I., Malkov V. A., Volodin A. A., Frank-Kamenetskii M. D. Electron microscopy visualization of oligonucleotide binding to duplex DNA via triplex formation. J Mol Biol. 1993 Mar 20;230(2):379–383. doi: 10.1006/jmbi.1993.1154. [DOI] [PubMed] [Google Scholar]
  7. Cherny D. Y., Belotserkovskii B. P., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Berg R. H., Nielsen P. E. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1667–1670. doi: 10.1073/pnas.90.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E., Coull J. Solid-phase synthesis of peptide nucleic acids. J Pept Sci. 1995 May-Jun;1(3):175–183. doi: 10.1002/psc.310010304. [DOI] [PubMed] [Google Scholar]
  9. Demidov V. V., Cherny D. I., Kurakin A. V., Yavnilovich M. V., Malkov V. A., Frank-Kamenetskii M. D., Sönnichsen S. H., Nielsen P. E. Electron microscopy mapping of oligopurine tracts in duplex DNA by peptide nucleic acid targeting. Nucleic Acids Res. 1994 Dec 11;22(24):5218–5222. doi: 10.1093/nar/22.24.5218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Demidov V. V., Yavnilovich M. V., Belotserkovskii B. P., Frank-Kamenetskii M. D., Nielsen P. E. Kinetics and mechanism of polyamide ("peptide") nucleic acid binding to duplex DNA. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2637–2641. doi: 10.1073/pnas.92.7.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dubochet J., Ducommun M., Zollinger M., Kellenberger E. A new preparation method for dark-field electron microscopy of biomacromolecules. J Ultrastruct Res. 1971 Apr;35(1):147–167. doi: 10.1016/s0022-5320(71)80148-x. [DOI] [PubMed] [Google Scholar]
  12. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., Nielsen P. E. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995 Jan 25;23(2):217–222. doi: 10.1093/nar/23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furrer P., Bednar J., Stasiak A. Z., Katritch V., Michoud D., Stasiak A., Dubochet J. Opposite effect of counterions on the persistence length of nicked and non-nicked DNA. J Mol Biol. 1997 Mar 7;266(4):711–721. doi: 10.1006/jmbi.1996.0825. [DOI] [PubMed] [Google Scholar]
  14. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  15. Hansma H. G., Bezanilla M., Zenhausern F., Adrian M., Sinsheimer R. L. Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 1993 Feb 11;21(3):505–512. doi: 10.1093/nar/21.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansma H. G., Laney D. E., Bezanilla M., Sinsheimer R. L., Hansma P. K. Applications for atomic force microscopy of DNA. Biophys J. 1995 May;68(5):1672–1677. doi: 10.1016/S0006-3495(95)80343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hansma H. G., Revenko I., Kim K., Laney D. E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res. 1996 Feb 15;24(4):713–720. doi: 10.1093/nar/24.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hélène C. The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des. 1991 Dec;6(6):569–584. [PubMed] [Google Scholar]
  19. Knudsen H., Nielsen P. E. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res. 1996 Feb 1;24(3):494–500. doi: 10.1093/nar/24.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Larquet E., Le Cam E., Fourcade A., Culard F., Furrer P., Delain E. Complémentarité des microscopies dans l'analyse structurale de minicercles d'ADN associés à la protéine MC1. C R Acad Sci III. 1996 Jun;319(6):461–471. [PubMed] [Google Scholar]
  21. Le Cam E., Fack F., Ménissier-de Murcia J., Cognet J. A., Barbin A., Sarantoglou V., Révet B., Delain E., de Murcia G. Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol. 1994 Jan 21;235(3):1062–1071. doi: 10.1006/jmbi.1994.1057. [DOI] [PubMed] [Google Scholar]
  22. Lee J. S., Ashley C., Hampel K. J., Bradley R., Scraba D. G. A stable interaction between separated pyrimidine.purine tracts in circular DNA. J Mol Biol. 1995 Sep 22;252(3):283–288. doi: 10.1006/jmbi.1995.0495. [DOI] [PubMed] [Google Scholar]
  23. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Møllegaard N. E., Murchie A. I., Lilley D. M., Nielsen P. E. Uranyl photoprobing of a four-way DNA junction: evidence for specific metal ion binding. EMBO J. 1994 Apr 1;13(7):1508–1513. doi: 10.1002/j.1460-2075.1994.tb06412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 1993 Jan 25;21(2):197–200. doi: 10.1093/nar/21.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  27. Nielsen P. E., Egholm M., Buchardt O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem. 1994 Jan-Feb;5(1):3–7. doi: 10.1021/bc00025a001. [DOI] [PubMed] [Google Scholar]
  28. Peffer N. J., Hanvey J. C., Bisi J. E., Thomson S. A., Hassman C. F., Noble S. A., Babiss L. E. Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10648–10652. doi: 10.1073/pnas.90.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pfannschmidt C., Schaper A., Heim G., Jovin T. M., Langowski J. Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking. Nucleic Acids Res. 1996 May 1;24(9):1702–1709. doi: 10.1093/nar/24.9.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schaper A., Starink J. P., Jovin T. M. The scanning force microscopy of DNA in air and in n-propanol using new spreading agents. FEBS Lett. 1994 Nov 21;355(1):91–95. doi: 10.1016/0014-5793(94)01166-4. [DOI] [PubMed] [Google Scholar]
  31. Svinarchuk F., Bertrand J. R., Malvy C. A short purine oligonucleotide forms a highly stable triple helix with the promoter of the murine c-pim-1 proto-oncogene. Nucleic Acids Res. 1994 Sep 11;22(18):3742–3747. doi: 10.1093/nar/22.18.3742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Svinarchuk F., Cherny D., Debin A., Delain E., Malvy C. A new approach to overcome potassium-mediated inhibition of triplex formation. Nucleic Acids Res. 1996 Oct 1;24(19):3858–3865. doi: 10.1093/nar/24.19.3858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Svinarchuk F., Monnot M., Merle A., Malvy C., Fermandjian S. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure. Nucleic Acids Res. 1995 Oct 11;23(19):3831–3836. doi: 10.1093/nar/23.19.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang Y. H., Howard M. T., Griffith J. D. Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending. Biochemistry. 1991 Jun 4;30(22):5443–5449. doi: 10.1021/bi00236a017. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES