Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Feb;265(2):507–519. doi: 10.1113/jphysiol.1977.sp011727

The relation of axonal transport of mitochondria with microtubules and other axoplasmic organelles.

R L Friede, K C Ho
PMCID: PMC1307831  PMID: 66310

Abstract

Axonal transport of mitochondria was studied in frog sciatic nerves incubated in agents selected for their known or alleged effect on microtubules or axonal flow. Quantitative data on mitochondria, microtubules, neurofilaments, endoplasmic reticulum, and cross-sectional area of the axon indicate that axonal transport of mitochondria is dependent on microtubules. When more than half of the microtubules are destroyed, the axonal transport of mitochondria is diminished in proportion to the destruction of microtubules. Axonal transport of mitochondria is not related to neurofilaments and endoplasmic reticulum. Changes in the cross-sectional area of axons, even upon reduction to half the normal size, do not noticeably affect mitochondrial transport. Cyanide which blocks oxidative metabolism also blocks axonal transport of mitochondria, but analysis of fine structure indicates that cyanide is destructive to microtubules as well.

Full text

PDF
511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks P., Mangnall D., Mayor D. The re-distribution of cytochrome oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J Physiol. 1969 Feb;200(3):745–762. doi: 10.1113/jphysiol.1969.sp008720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banks P., Mayor D., Mitchell M., Tomlinson D. Studies on the translocation of noradrenaline-containing vesicles in post-ganglionic sympathetic neurones in vitro. Inhibition of movement by colchicine and vinblastine and evidence for the involvement of axonal microtubules. J Physiol. 1971 Aug;216(3):625–639. doi: 10.1113/jphysiol.1971.sp009544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byers M. R., Fink B. R., Kennedy R. D., Middaugh M. E., Hendrickson A. E. Effects of lidocaine on axonal morphology, microtubules, and rapid transport in rabbit vagus nerve in vitro. J Neurobiol. 1973;4(2):125–143. doi: 10.1002/neu.480040205. [DOI] [PubMed] [Google Scholar]
  4. Cullen B. F., Haschke R. H. Local anesthetic inhibition of phagocytosis and metabolism of human leukocytes. Anesthesiology. 1974 Feb;40(2):142–146. doi: 10.1097/00000542-197402000-00009. [DOI] [PubMed] [Google Scholar]
  5. Elam J. S., Agranoff B. W. Rapid transport of protein in the optic system of the goldfish. J Neurochem. 1971 Mar;18(3):375–387. doi: 10.1111/j.1471-4159.1971.tb11965.x. [DOI] [PubMed] [Google Scholar]
  6. FRIEDE R. L. Transport of oxidative enzymes in nerve fibers: a histochemical investigation of the regenerative cycle in neurons. Exp Neurol. 1959 Nov;1:441–466. doi: 10.1016/0014-4886(59)90043-3. [DOI] [PubMed] [Google Scholar]
  7. Fink B. R., Byers M. R., Middaugh M. E. Dynamics of colchicine effects on rapid axonal transport and axonal morphology. Brain Res. 1973 Jun 29;56:299–311. doi: 10.1016/0006-8993(73)90343-0. [DOI] [PubMed] [Google Scholar]
  8. Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
  9. Heslop J. P., Howes E. A. Temperature and inhibitor effects on fast axonal transport in a molluscan nerve. J Neurochem. 1972 Jul;19(7):1709–1716. doi: 10.1111/j.1471-4159.1972.tb06215.x. [DOI] [PubMed] [Google Scholar]
  10. Jeffrey P. L., James K. A., Kidman A. D., Richards A. M., Austin L. The flow of mitochondria in chicken sciatic nerve. J Neurobiol. 1972;3(3):199–208. doi: 10.1002/neu.480030303. [DOI] [PubMed] [Google Scholar]
  11. Karlsson J. O., Sjöstrand J. Synthesis, migration and turnover of protein in retinal ganglion cells. J Neurochem. 1971 May;18(5):749–767. doi: 10.1111/j.1471-4159.1971.tb12005.x. [DOI] [PubMed] [Google Scholar]
  12. Kreutzberg G. W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci U S A. 1969 Mar;62(3):722–728. doi: 10.1073/pnas.62.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martinez A. J., Friede R. L. Accumulation of axoplasmic organelles in swollen nerve fibers. Brain Res. 1970 Apr 14;19(2):183–198. doi: 10.1016/0006-8993(70)90433-6. [DOI] [PubMed] [Google Scholar]
  14. Novotny I., Bianchi C. P. The effect of xylocaine on oxygen consumption in the frog sartorius. J Pharmacol Exp Ther. 1967 Mar;155(3):456–462. [PubMed] [Google Scholar]
  15. Ochs S., Hollingsworth D. Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J Neurochem. 1971 Jan;18(1):107–114. doi: 10.1111/j.1471-4159.1971.tb00172.x. [DOI] [PubMed] [Google Scholar]
  16. Ochs S., Ranish N. Metabolic dependence of fast axoplasmic transport in nerve. Science. 1970 Feb 6;167(3919):878–879. doi: 10.1126/science.167.3919.878. [DOI] [PubMed] [Google Scholar]
  17. Ochs S., Smith C. B. Fast axoplasmic transport in mammalian nerve in vitro after block of glycolysis with iodoacetic acid. J Neurochem. 1971 Jun;18(6):833–843. doi: 10.1111/j.1471-4159.1971.tb12013.x. [DOI] [PubMed] [Google Scholar]
  18. Partlow L. M., Ross C. D., Motwani R., McDougal D. B., Jr Transport of axonal enzymes in surviving segments of frog sciatic nerve. J Gen Physiol. 1972 Oct;60(4):388–405. doi: 10.1085/jgp.60.4.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakabe T., Maekawa T., Ishikawa T., Takeshita H. The effects of lidocaine on canine cerebral metabolism and circulation related to the electroencephalogram. Anesthesiology. 1974 May;40(5):433–441. doi: 10.1097/00000542-197405000-00004. [DOI] [PubMed] [Google Scholar]
  20. Schlaepfer W. W. Vincristine-induced axonal alterations in rat peripheral nerve. J Neuropathol Exp Neurol. 1971 Jul;30(3):488–505. doi: 10.1097/00005072-197107000-00012. [DOI] [PubMed] [Google Scholar]
  21. VAN HARREVELD A., RUSSELL F. E. Ionic migration in isolated nerves. J Cell Physiol. 1954 Jun;43(3):335–346. doi: 10.1002/jcp.1030430307. [DOI] [PubMed] [Google Scholar]
  22. Weiss P., Pillai A. Convection and fate of mitochondria in nerve fibers: axonal flow as vehicle. Proc Natl Acad Sci U S A. 1965 Jul;54(1):48–56. doi: 10.1073/pnas.54.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wiśniewski H., Terry R. D., Hirano A. Neurofibrillary pathology. J Neuropathol Exp Neurol. 1970 Apr;29(2):163–176. [PubMed] [Google Scholar]
  24. Zelená J. Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z Zellforsch Mikrosk Anat. 1968;92(2):186–196. doi: 10.1007/BF00335646. [DOI] [PubMed] [Google Scholar]
  25. Zelená J., Lubińska L., Gutmann E. Accumulation of organelles at the ends of interrupted axons. Z Zellforsch Mikrosk Anat. 1968;91(2):200–219. doi: 10.1007/BF00364311. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES