Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 May;257(1):45–62. doi: 10.1113/jphysiol.1976.sp011355

Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota.

A Flock, I Russell
PMCID: PMC1309343  PMID: 948076

Abstract

1. Intracellular recordings were made from morphologically identified hair cells in the lateral line canal organs of the burbot Lota lota. 2. I.p.s.p.s were recorded from hair cells when the efferent fibres were excited by electrical stimulation of the lateral line nerve. The i.p.s.p.s were abolished when the fish was injected with immobilizing concentration of Flaxedil which is known to block the efferent synapses. 3. The i.p.s.p.s are accompanied by a decrease in the resistance of the hair cell membrane and an increase in the intracellular receptor potential. 4. Spontaneous and mechanically evoked e.p.s.p.s which were recorded intracellularly from the post-synaptic afferent nerve terminals were reduced in amplitude for the duration of the i.p.s.p.

Full text

PDF
62-1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davis H. A model for transducer action in the cochlea. Cold Spring Harb Symp Quant Biol. 1965;30:181–190. doi: 10.1101/sqb.1965.030.01.020. [DOI] [PubMed] [Google Scholar]
  2. FEX J. Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol. 1959 Nov-Dec;50:540–541. doi: 10.3109/00016485909129230. [DOI] [PubMed] [Google Scholar]
  3. Fex J. Efferent inhibition in the cochlea related to hair-cell dc activity: study of postsynaptic activity of the crossed olivocochlear fibres in the cat. J Acoust Soc Am. 1967 Mar;41(3):666–675. doi: 10.1121/1.1910395. [DOI] [PubMed] [Google Scholar]
  4. Flock A., Lam D. M. Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature. 1974 May 10;249(453):142–144. doi: 10.1038/249142a0. [DOI] [PubMed] [Google Scholar]
  5. Flock A., Russell I. J. The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. J Physiol. 1973 Dec;235(3):591–605. doi: 10.1113/jphysiol.1973.sp010406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flock A., Russell I. Efferent nerve fibres: postsynaptic action on hair cells. Nat New Biol. 1973 May 16;243(124):89–91. [PubMed] [Google Scholar]
  7. Furukawa T., Ishii Y., Matsuura S. Synaptic delay and time course of postsynaptic potentials at the junction between hair cells and eighth nerve fibers in the goldfish. Jpn J Physiol. 1972 Dec;22(6):617–635. doi: 10.2170/jjphysiol.22.617. [DOI] [PubMed] [Google Scholar]
  8. Furukawa T., Ishii Y. Neurophysiological studies on hearing in goldfish. J Neurophysiol. 1967 Nov;30(6):1377–1403. doi: 10.1152/jn.1967.30.6.1377. [DOI] [PubMed] [Google Scholar]
  9. GALAMBOS R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol. 1956 Sep;19(5):424–437. doi: 10.1152/jn.1956.19.5.424. [DOI] [PubMed] [Google Scholar]
  10. HAMA K. SOME OBSERVATIONS ON THE FINE STRUCTURE OF THE LATERAL LINE ORGAN OF THE JAPANESE SEA EEL LYNCOZYMBA NYSTROMI. J Cell Biol. 1965 Feb;24:193–210. doi: 10.1083/jcb.24.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris G. G., Frishkopf L. S., Flock A. Receptor potentials from hair cells of the lateral line. Science. 1970 Jan 2;167(3914):76–79. doi: 10.1126/science.167.3914.76. [DOI] [PubMed] [Google Scholar]
  12. Ishii Y., Matsuura S., Furukawa T. An input-output relation at the synapse between hair cells and eighth nerve fibers in goldfish. Jpn J Physiol. 1971 Feb;21(1):91–98. doi: 10.2170/jjphysiol.21.91. [DOI] [PubMed] [Google Scholar]
  13. JIELOF R., SPOOR A., DE VRIES H. The microphonic activity of the lateral line. J Physiol. 1952 Feb;116(2):137–157. doi: 10.1113/jphysiol.1952.sp004695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaneko A., Hashimoto H. Recording site of the single cone response determined by an electrode marking technique. Vision Res. 1967 Nov;7(11):847–851. doi: 10.1016/0042-6989(67)90005-3. [DOI] [PubMed] [Google Scholar]
  15. Llinás R., Precht W. The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp Brain Res. 1969 Aug 19;9(1):16–29. doi: 10.1007/BF00235449. [DOI] [PubMed] [Google Scholar]
  16. Osborne M. P., Thornhill R. A. The effect of monoamine depleting drugs upon the synaptic bars in the inner ear of the bullfrog (Rana catesbeiana). Z Zellforsch Mikrosk Anat. 1972;127(3):347–355. doi: 10.1007/BF00306878. [DOI] [PubMed] [Google Scholar]
  17. Roberts B. L., Russell I. J. The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol. 1972 Oct;57(2):435–448. doi: 10.1242/jeb.57.2.435. [DOI] [PubMed] [Google Scholar]
  18. Russell I. J. Central and peripheral inhibition of lateral line input during the startle response in goldfish. Brain Res. 1974 Nov 22;80(3):517–522. doi: 10.1016/0006-8993(74)91036-1. [DOI] [PubMed] [Google Scholar]
  19. Russell I. J. The role of the lateral-line efferent system in Xenopus laevis. J Exp Biol. 1971 Jun;54(3):621–641. doi: 10.1242/jeb.54.3.621. [DOI] [PubMed] [Google Scholar]
  20. Steinbach A. B., Bennett M. V. Effects of divalent ions and drugs on synaptic transmission in phasic electroreceptors in a mormyrid fish. J Gen Physiol. 1971 Nov;58(5):580–598. doi: 10.1085/jgp.58.5.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stretton A. O., Kravitz E. A. Neuronal geometry: determination with a technique of intracellular dye injection. Science. 1968 Oct 4;162(3849):132–134. doi: 10.1126/science.162.3849.132. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES