Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acharya A. S., Taniuchi H. A study of renaturation of reduced hen egg white lysozyme. Enzymically active intermediates formed during oxidation of the reduced protein. J Biol Chem. 1976 Nov 25;251(22):6934–6946. [PubMed] [Google Scholar]
- Acharya A. S., Taniuchi H. Formation of the four isomers of hen egg white lysozyme containing three negative disulfide bonds and one open disulfide bond. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2362–2366. doi: 10.1073/pnas.74.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson W. L., Wetlaufer D. B. The folding pathway of reduced lysozyme. J Biol Chem. 1976 May 25;251(10):3147–3153. [PubMed] [Google Scholar]
- Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
- Baldwin R. L. Intermediates in protein folding reactions and the mechanism of protein folding. Annu Rev Biochem. 1975;44:453–475. doi: 10.1146/annurev.bi.44.070175.002321. [DOI] [PubMed] [Google Scholar]
- Bosshard H. R., Koch G. L., Harley B. S. The aminoacyl-tRNA synthetase-tRNA complex: detection by differential labelling of lysine residues involved in complex formation. J Mol Biol. 1978 Mar 5;119(3):377–389. doi: 10.1016/0022-2836(78)90220-6. [DOI] [PubMed] [Google Scholar]
- Burgess A. W., Weinstein L. I., Gabel D., Scheraga H. A. Immobilized carboxypeptidase A as a probe for studying the thermally induced unfolding of bovine pancreatic ribonuclease. Biochemistry. 1975 Jan 28;14(2):197–200. doi: 10.1021/bi00673a001. [DOI] [PubMed] [Google Scholar]
- Chavez L. G., Scherage H. A. Immunological determination of the order of folding of portions of the molecule during air oxidation of reduced ribonuclease. Biochemistry. 1977 May 3;16(9):1849–1856. doi: 10.1021/bi00628a014. [DOI] [PubMed] [Google Scholar]
- Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
- Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol. 1974 Aug 15;87(3):579–602. doi: 10.1016/0022-2836(74)90105-3. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Intermediates in the refolding of reduced ribonuclease A. J Mol Biol. 1979 Apr 15;129(3):411–431. doi: 10.1016/0022-2836(79)90504-7. [DOI] [PubMed] [Google Scholar]
- Creighton T. E., Kalef E., Arnon R. Immunochemical analysis of the conformational properties of intermediates trapped in the folding and unfolding of bovine pancreatic trypsin inhibitor. J Mol Biol. 1978 Aug 5;123(2):129–147. doi: 10.1016/0022-2836(78)90317-0. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J Mol Biol. 1975 Jun 25;95(2):167–199. doi: 10.1016/0022-2836(75)90389-7. [DOI] [PubMed] [Google Scholar]
- Degani Y., Patchornik A. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues. Biochemistry. 1974 Jan 1;13(1):1–11. doi: 10.1021/bi00698a001. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
- Furie B., Schechter A. N., Sachs D. H., Anfinsen C. B. An immunological approach to the conformational equilibrium of staphylococcal nuclease. J Mol Biol. 1975 Mar 15;92(4):497–506. doi: 10.1016/0022-2836(75)90305-8. [DOI] [PubMed] [Google Scholar]
- Garel J. R., Baldwin R. L. A physical difference between the fast- and slow-refolding forms of nitrotyrosyl ribonuclease A: the pK values of the nitrotyrosyl groups. J Mol Biol. 1975 Jun 5;94(4):621–632. doi: 10.1016/0022-2836(75)90326-5. [DOI] [PubMed] [Google Scholar]
- Ghelis C., Labouesse J., Labouesse B. The conformational oscillation of delta-chymotrypsin involvement of methionine-192. Eur J Biochem. 1975 Nov 1;59(1):159–166. doi: 10.1111/j.1432-1033.1975.tb02437.x. [DOI] [PubMed] [Google Scholar]
- Ghelis C., Tempete-Gaillourdet M., Yon J. M. The folding of pancreatic elastase: independent domain refolding and inter-domain interaction. Biochem Biophys Res Commun. 1978 Sep 14;84(1):31–36. doi: 10.1016/0006-291x(78)90258-9. [DOI] [PubMed] [Google Scholar]
- Ghélis C., Yon J. M. Couplage conformationnel entre unités structurales. Etape décisive dans la formation de la structure fonctionnelle des protéines. C R Seances Acad Sci D. 1979 Jul 9;289(2):197–199. [PubMed] [Google Scholar]
- Gorbunoff M. J., Timasheff S. N. The role of tyrosines in elastase. Arch Biochem Biophys. 1972 Sep;152(1):413–422. doi: 10.1016/0003-9861(72)90231-7. [DOI] [PubMed] [Google Scholar]
- Gros C., Labouesse B. Study of the dansylation reaction of amino acids, peptides and proteins. Eur J Biochem. 1969 Feb;7(4):463–470. doi: 10.1111/j.1432-1033.1969.tb19632.x. [DOI] [PubMed] [Google Scholar]
- Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson G. R., Schaffer M. H., Stark G. R., Vanaman T. C. Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J Biol Chem. 1973 Oct 10;248(19):6583–6591. [PubMed] [Google Scholar]
- Jori G., Gennari G., Folin M. Selective photosensitized oxidation of the methionyl residues in elastase. Photochem Photobiol. 1974 Jan;19(1):79–82. doi: 10.1111/j.1751-1097.1974.tb06477.x. [DOI] [PubMed] [Google Scholar]
- Kaplan H., Stevenson K. J., Hartley B. S. Competitive labelling, a method for determining the reactivity of individual groups in proteins. The amino groups of porcine elastase. Biochem J. 1971 Sep;124(2):289–299. doi: 10.1042/bj1240289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karibian D., Jones C., Gertler A., Dorrington K. J., Hofmann T. On the reaction of acetic and maleic anhydrides with elastase. Evidence for a role of the NH2-terminal valine. Biochemistry. 1974 Jul 2;13(14):2891–2897. doi: 10.1021/bi00711a018. [DOI] [PubMed] [Google Scholar]
- Karplus M., Weaver D. L. Protein-folding dynamics. Nature. 1976 Apr 1;260(5550):404–406. doi: 10.1038/260404a0. [DOI] [PubMed] [Google Scholar]
- NAUGHTON M. A., SANGER F. Purification and specificity of pancreatic elastase. Biochem J. 1961 Jan;78:156–163. doi: 10.1042/bj0780156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reboud-Ravaux M. N-Acetylbenzotriazole as a protein reagent. Specific behaviour towards delta-chymotrypsin. Eur J Biochem. 1976 May 17;65(1):25–33. doi: 10.1111/j.1432-1033.1976.tb10385.x. [DOI] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Sawyer L., Shotton D. M., Campbell J. W., Wendell P. L., Muirhead H., Watson H. C. The atomic structure of crystalline porcine pancreatic elastase at 2.5 A resolution: comparisons with the structure of alpha-chymotrypsin. J Mol Biol. 1978 Jan 15;118(2):137–208. doi: 10.1016/0022-2836(78)90412-6. [DOI] [PubMed] [Google Scholar]
- Schulz G. E. Structural rules for globular proteins. Angew Chem Int Ed Engl. 1977;16(1):23–32. doi: 10.1002/anie.197700231. [DOI] [PubMed] [Google Scholar]
- Seymour J., O'Brien E. J. The position of tropomyosin in muscle thin filaments. Nature. 1980 Feb 14;283(5748):680–682. doi: 10.1038/283680a0. [DOI] [PubMed] [Google Scholar]
- Snyder G. H., Rowan R., 3rd, Karplus S., Sykes B. D. Complete tyrosine assignments in the high field 1H nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor. Biochemistry. 1975 Aug 26;14(17):3765–3777. doi: 10.1021/bi00688a008. [DOI] [PubMed] [Google Scholar]
- Spivak V. A., Fedoseev V. A., Orlov V. M., Varshavsky J. M. Quantitative ultramicroanalysis of amino acids in the form of their DNS-derivatives. 3. Analysis of natural amino acids. Characteristics of the method. Anal Biochem. 1971 Nov;44(1):12–31. doi: 10.1016/0003-2697(71)90341-1. [DOI] [PubMed] [Google Scholar]
- Teale J. M., Benjamin D. C. Antibody as an immunological probe for studying the refolding of bovine serum albumin. II. Evidence for the independent refolding of the domains of the molecule. J Biol Chem. 1976 Aug 10;251(15):4609–4615. [PubMed] [Google Scholar]
- Tenu J. P., Chelis C., Leger D. S., Carrette J. Mechanism of an active transport of calcium. Ethoxyformylation of sarcoplasmic reticulum vesicles. J Biol Chem. 1976 Jul 25;251(14):4322–4329. [PubMed] [Google Scholar]
- Wagner G., Wüthrich K. Dynamic model of globular protein conformations based on NMR studies in solution. Nature. 1978 Sep 21;275(5677):247–248. doi: 10.1038/275247a0. [DOI] [PubMed] [Google Scholar]
- Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetlaufer D. B., Ristow S. Acquisition of three-dimensional structure of proteins. Annu Rev Biochem. 1973;42:135–158. doi: 10.1146/annurev.bi.42.070173.001031. [DOI] [PubMed] [Google Scholar]
- Yon J. M. Some aspects of protein folding. Biochimie. 1978 Sep 29;60(6-7):581–591. doi: 10.1016/s0300-9084(78)80776-7. [DOI] [PubMed] [Google Scholar]