Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jan;25(1):107–111. doi: 10.1016/s0006-3495(79)85280-7

On the Theoretical Shapes of Bilipid Vesicles under Conditions of Increasing Membrane Area

Jon C Luke, Jerome I Kaplan
PMCID: PMC1328450  PMID: 262380

Abstract

Certain standard properties, including spontaneous curvature, are assumed for the membrane of a bilipid vesicle. Then, if there is a mechanism that causes the membrane area to increase, vesicle cleavage is found to occur.

Full text

PDF
107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlind A. Cellular dynamics in invertebrate neurosecretory systems. Int Rev Cytol. 1977;49:171–251. doi: 10.1016/s0074-7696(08)61949-x. [DOI] [PubMed] [Google Scholar]
  2. Canham P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970 Jan;26(1):61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
  3. Deuling H. J., Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J. 1976 Aug;16(8):861–868. doi: 10.1016/S0006-3495(76)85736-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans E. A. Bending resistance and chemically induced moments in membrane bilayers. Biophys J. 1974 Dec;14(12):923–931. doi: 10.1016/S0006-3495(74)85959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fung Y. C., Tong P. Theory of the sphering of red blood cells. Biophys J. 1968 Feb;8(2):175–198. doi: 10.1016/S0006-3495(68)86484-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenspan H. P. On the dynamics of cell cleavage. J Theor Biol. 1977 Mar 7;65(1):79–99. doi: 10.1016/0022-5193(77)90078-9. [DOI] [PubMed] [Google Scholar]
  7. Helfrich W. Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z Naturforsch C. 1974 Sep-Oct;29C(9-10):510–515. doi: 10.1515/znc-1974-9-1010. [DOI] [PubMed] [Google Scholar]
  8. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  9. Jenkins J. T. Static equilibrium configurations of a model red blood cell. J Math Biol. 1977 May 23;4(2):149–169. doi: 10.1007/BF00275981. [DOI] [PubMed] [Google Scholar]
  10. Morré D. J., Ovtracht L. Dynamics of the Golgi apparatus: membrane differentiation and membrane flow. Int Rev Cytol Suppl. 1977;(5):61–188. [PubMed] [Google Scholar]
  11. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES