Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Mar;37(3):667–672.

Measurement of the lateral compressibility of several phospholipid bilayers.

L J Lis, M McAlister, N Fuller, R P Rand, V A Parsegian
PMCID: PMC1328852  PMID: 7074192

Abstract

Lateral compressibilities of bilayers in multilayer lattices are given for 10 phospholipid preparation:dilauryl-, dimyristoyl-, dipalmitoyl-, distearoyl-, and dioleoylphosphatidylcholine (PC); egg phosphatidylethanolamine (PE); as well as cholesterol-containing bilayers of dipalmitoyl PC or of egg PC. Bilayer deformability is highly nonlinear and does not permit description in terms of a simple modulus. The presence of cholesterol or C=C bonds (dioleoyl PC) increases deformability, but freezing of acyl chains does not cause dramatic stiffening of the bilayer. Lateral compression of dilauryl PC an dimyristoyl PC causes a transition from "melted" to "frozen" acyl chains above the normal transition temperatures. Our measurements do not correspond in any obvious way to lateral compressibilities in monolayers at the air-water interface.

Full text

PDF
667

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Latorre R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J. 1978 Jan;21(1):1–17. doi: 10.1016/S0006-3495(78)85505-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cubero Robles E., van den Berg D. Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides. Biochim Biophys Acta. 1969 Dec 17;187(4):520–526. doi: 10.1016/0005-2760(69)90049-6. [DOI] [PubMed] [Google Scholar]
  3. Demel R. A., Joos P. Interaction between lecithins and cholesterol at the air-water and oil-water interfaces. Chem Phys Lipids. 1968 Feb;2(1):35–46. doi: 10.1016/0009-3084(68)90033-9. [DOI] [PubMed] [Google Scholar]
  4. Gershfeld N. L. Equilibrium studies of lecithin-cholesterol interactions I. Stoichiometry of lecithin-cholesterol complexes in bulk systems. Biophys J. 1978 Jun;22(3):469–488. doi: 10.1016/S0006-3495(78)85500-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gershfeld N. L., Tajima K. Spontaneous formation of lecithin bilayers at the air-water surface. Nature. 1979 Jun 21;279(5715):708–709. doi: 10.1038/279708a0. [DOI] [PubMed] [Google Scholar]
  6. Horn L. W., Gershfeld N. L. Equilibrium and metastable states in lecithin films. Biophys J. 1977 Jun;18(3):301–310. doi: 10.1016/S0006-3495(77)85615-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  8. Joos P., Demel R. A. The interaction energies of cholesterol and lecithin in spread mixed monolayers at the air-water interface. Biochim Biophys Acta. 1969;183(3):447–457. doi: 10.1016/0005-2736(69)90159-x. [DOI] [PubMed] [Google Scholar]
  9. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LeNeveu D. M., Rand R. P. Measurement and modification of forces between lecithin bilayers. Biophys J. 1977 May;18(2):209–230. doi: 10.1016/S0006-3495(77)85608-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Letter: Lenses and the compression of black lipid membranes by an electric field. Biophys J. 1975 Jan;15(1):77–81. doi: 10.1016/S0006-3495(75)85793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
  13. Parsegian V. A., Rand R. P., Stamatoff J. Perturbation of membrane structure by uranyl acetate labeling. Biophys J. 1981 Mar;33(3):475–477. doi: 10.1016/S0006-3495(81)84908-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips M. C., Chapman D. Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):301–313. doi: 10.1016/0005-2736(68)90115-6. [DOI] [PubMed] [Google Scholar]
  15. Phillips M. C., Hauser H., Paltauf F. The inter- and intra-molecular mixing of hydrocarbon chains in lecithin-water systems. Chem Phys Lipids. 1972 Mar;8(2):127–133. doi: 10.1016/0009-3084(72)90024-2. [DOI] [PubMed] [Google Scholar]
  16. Rand R. P., Parsegian V. A., Henry J. A., Lis L. J., McAlister M. The effect of cholesterol on measured interaction and compressibility of dipalmitoylphosphatidylcholine bilayers. Can J Biochem. 1980 Oct;58(10):959–968. doi: 10.1139/o80-131. [DOI] [PubMed] [Google Scholar]
  17. SHAH D. O., SCHULMAN J. H. BINDING OF METAL IONS TO MONOLAYERS OF LECITHINS, PLASMALOGEN, CARDIOLIPIN, AND DICETYL PHOSPHATE. J Lipid Res. 1965 Jul;6:341–349. [PubMed] [Google Scholar]
  18. Shah D. O., Schulman J. H. Influence of calcium, cholesterol, and unsaturation on lecithin monolayers. J Lipid Res. 1967 May;8(3):215–226. [PubMed] [Google Scholar]
  19. Tajima K., Gershfeld N. L. Equilibrium studies of lecithin-cholesterol interactions. II. Phase relations in surface films: analysis of the "condensing" effect of cholesterol. Biophys J. 1978 Jun;22(3):489–500. doi: 10.1016/S0006-3495(78)85501-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. White S. H. Letter: Comments on "electrical breakdown of bimolecular lipid membranes as an electromechanical instability". Biophys J. 1974 Feb;14(2):155–158. doi: 10.1016/S0006-3495(74)70007-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES