Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1983 Mar;41(3):251–257. doi: 10.1016/S0006-3495(83)84435-X

Tensions and free energies of formation of "solventless" lipid bilayers. Measurement of high contact angles.

D Needham, D A Haydon
PMCID: PMC1329177  PMID: 6838967

Abstract

A method is described for the accurate measurement of the interfacial tension of lipid bilayer membranes containing little or no solvent. The tensions were obtained from the interfacial tensions of the equilibrium film-forming solution in the Plateau-Gibbs border, measured by conventional techniques, and the contact angle between the border and the bilayer. The contact angles in these systems are large (greater than 10 degrees) and were estimated by a new method that involved the injection of small known volumes of lipid solution into the bilayer so as to form a lens. Results have been obtained for monoolein-triolein, monoolein-squalene, and monoolein-squalene-decane systems. Half bilayer tensions in these systems were up to approximately 1 mN m-1 less than the single interface tensions. Although bilayer tension tended to increase with bilayer thickness, the interdependence of these quantities varied with the alkane solvents present. In the monoolein-squalene-decane systems, small concentrations of decane have a larger effect on tension than on thickness. Free energies of formation of the near-solventless bilayers were much greater than estimated from the simple application of Lifshitz theory.

Full text

PDF
252

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cherry R. J., Chapman D. Optical properties of black lecithin films. J Mol Biol. 1969 Feb 28;40(1):19–32. doi: 10.1016/0022-2836(69)90293-9. [DOI] [PubMed] [Google Scholar]
  2. Elliott J. R., Haydon D. A. The interaction of n-octanol with black lipid bilayer membranes. Biochim Biophys Acta. 1979 Oct 19;557(1):259–263. doi: 10.1016/0005-2736(79)90108-1. [DOI] [PubMed] [Google Scholar]
  3. Gruen D. W. A mean-field model of the alkane-saturated lipid bilayer above its phase transition. I. Development of the model. Biophys J. 1981 Feb;33(2):149–166. doi: 10.1016/S0006-3495(81)84878-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gruen D. W., Haydon D. A. A mean-field model of the alkane-saturated lipid bilayer above its phase transition. II. Results and comparison with experiment. Biophys J. 1981 Feb;33(2):167–187. doi: 10.1016/S0006-3495(81)84879-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gruen D. W., Wolfe J. Lateral tensions and pressures in membranes and lipid monolayers. Biochim Biophys Acta. 1982 Jun 14;688(2):572–580. doi: 10.1016/0005-2736(82)90368-6. [DOI] [PubMed] [Google Scholar]
  6. Haydon D. A. Functions of the lipid in bilayer ion permeability. Ann N Y Acad Sci. 1975 Dec 30;264:2–16. doi: 10.1111/j.1749-6632.1975.tb31472.x. [DOI] [PubMed] [Google Scholar]
  7. Haydon D. A., Hendry B. M., Levinson S. R., Requena J. Anaesthesia by the n-alkanes. A comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes. Biochim Biophys Acta. 1977 Oct 3;470(1):17–34. doi: 10.1016/0005-2736(77)90058-x. [DOI] [PubMed] [Google Scholar]
  8. Haydon D. A., Kimura J. E. Some effects of n-pentane on the sodium and potassium currents of the squid giant axon. J Physiol. 1981 Mar;312:57–70. doi: 10.1113/jphysiol.1981.sp013615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haydon D. A., Requena J., Urban B. W. Some effects of aliphatic hydrocarbons on the electrical capacity and ionic currents of the squid giant axon membrane. J Physiol. 1980 Dec;309:229–245. doi: 10.1113/jphysiol.1980.sp013506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendry B. M., Urban B. W., Haydon D. A. The blockage of the electrical conductance in a pore-containing membrane by the n-alkanes. Biochim Biophys Acta. 1978 Oct 19;513(1):106–116. doi: 10.1016/0005-2736(78)90116-5. [DOI] [PubMed] [Google Scholar]
  11. Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
  12. Kolb H. A., Bamberg E. Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies. Biochim Biophys Acta. 1977 Jan 4;464(1):127–141. doi: 10.1016/0005-2736(77)90376-5. [DOI] [PubMed] [Google Scholar]
  13. Neher E., Eibl H. The influence of phospholipid polar groups on gramicidin channels. Biochim Biophys Acta. 1977 Jan 4;464(1):37–44. doi: 10.1016/0005-2736(77)90368-6. [DOI] [PubMed] [Google Scholar]
  14. Pope C. G., Urban B. W., Haydon D. A. The influence of n-alkanols and cholesterol on the duration and conductance of gramicidin single channels in monoolein bilayers. Biochim Biophys Acta. 1982 May 21;688(1):279–283. doi: 10.1016/0005-2736(82)90605-8. [DOI] [PubMed] [Google Scholar]
  15. Rudnev V. S., Ermishkin L. N., Fonina L. A., Rovin YuG The dependence of the conductance and lifetime of gramicidin channels on the thickness and tension of lipid bilayers. Biochim Biophys Acta. 1981 Mar 20;642(1):196–202. doi: 10.1016/0005-2736(81)90149-8. [DOI] [PubMed] [Google Scholar]
  16. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  17. Waldbillig R. C., Szabo G. Planar bilayer membranes from pure lipids. Biochim Biophys Acta. 1979 Nov 2;557(2):295–305. doi: 10.1016/0005-2736(79)90328-6. [DOI] [PubMed] [Google Scholar]
  18. White S. H. Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys J. 1978 Sep;23(3):337–347. doi: 10.1016/S0006-3495(78)85453-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES