Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Feb;49(2):493–499. doi: 10.1016/S0006-3495(86)83659-1

Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model.

E Donath, A Voigt
PMCID: PMC1329489  PMID: 3955181

Abstract

The limitations of previous linear electrokinetic theories are discussed. A special model of the surface charge distribution, based on the minimum condition of the interfacial electrostatic free energy, is introduced. The model describes the electrophoretic mobility, taking into account the electroosmotic flow through the surface macromolecular layer and the surface conductivity. This nonlinear electrophoretic theory describes experimental data obtained with human erythrocytes. Numerical results for an uniformly distributed space charge are also presented.

Full text

PDF
495

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donath E., Steidel R. Electrostatic and structural properties of the surface of human erythrocytes. 3. Cell electrophoretical studies following addition of human serum albumin. Acta Biol Med Ger. 1980;39(2-3):207–215. [PubMed] [Google Scholar]
  2. Donath E., Voigt A. Charge distribution within cell surface coats of single and interacting surfaces--a minimum free electrostatic energy approach. Conclusions for electrophoretic mobility measurements. J Theor Biol. 1983 Apr 21;101(4):569–584. doi: 10.1016/0022-5193(83)90016-4. [DOI] [PubMed] [Google Scholar]
  3. HAYDON D. A. The surface charge of cells and some other small particles as indicated by electrophoresis. II. The interpretation of the electrophoretic charge. Biochim Biophys Acta. 1961 Jul 8;50:457–462. doi: 10.1016/0006-3002(61)90004-x. [DOI] [PubMed] [Google Scholar]
  4. HEARD D. H., SEAMAN G. V. The action of lower aldehydes on the human erythrocyte. Biochim Biophys Acta. 1961 Oct 28;53:366–374. doi: 10.1016/0006-3002(61)90448-6. [DOI] [PubMed] [Google Scholar]
  5. HEARD D. H., SEAMAN G. V. The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane. J Gen Physiol. 1960 Jan;43:635–654. doi: 10.1085/jgp.43.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUNTER R. J. Constancy of the surface charge density of human erythrocytes at different ionic strengths. Arch Biochem Biophys. 1960 Jun;88:308–312. doi: 10.1016/0003-9861(60)90241-1. [DOI] [PubMed] [Google Scholar]
  7. Levine S., Levine M., Sharp K. A., Brooks D. E. Theory of the electrokinetic behavior of human erythrocytes. Biophys J. 1983 May;42(2):127–135. doi: 10.1016/S0006-3495(83)84378-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McDaniel R. V., McLaughlin A., Winiski A. P., Eisenberg M., McLaughlin S. Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes. Biochemistry. 1984 Sep 25;23(20):4618–4624. doi: 10.1021/bi00315a016. [DOI] [PubMed] [Google Scholar]
  9. Nordt F. J., Knox R. J., Seaman G. V. Red cell aging. II. Anomalous electrophoretic properties of neuraminidase treated human erythrocytes. J Cell Physiol. 1978 Nov;97(2):209–220. doi: 10.1002/jcp.1040970210. [DOI] [PubMed] [Google Scholar]
  10. Sharp K. A., Brooks D. E. Calculation of the electrophoretic mobility of a particle bearing bound polyelectrolyte using the nonlinear poisson-boltzmann equation. Biophys J. 1985 Apr;47(4):563–566. doi: 10.1016/S0006-3495(85)83951-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vassar P. S., Kendall M. J., Seaman G. V. Electrophoresis of human leukocytes. Arch Biochem Biophys. 1969 Dec;135(1):350–355. doi: 10.1016/0003-9861(69)90549-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES