Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Jan;49(1):131–133. doi: 10.1016/S0006-3495(86)83622-0

Structural Models for the Regulatory Switch of Myosin

Peter Vibert, Eva Szentkiralyi, Peter Hardwicke, Andrew G Szent-Györgyi, Carolyn Cohen
PMCID: PMC1329606  PMID: 19431617

Full text

PDF
133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagshaw C. R. Divalent metal ion binding and subunit interactions in myosins: a critical review. J Muscle Res Cell Motil. 1980 Sep;1(3):255–277. doi: 10.1007/BF00711931. [DOI] [PubMed] [Google Scholar]
  2. Bennett A. J., Patel N., Wells C., Bagshaw C. R. 8-Anilino-1-naphthalenesulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin. J Muscle Res Cell Motil. 1984 Apr;5(2):165–182. doi: 10.1007/BF00712154. [DOI] [PubMed] [Google Scholar]
  3. Chalovich J. M., Chantler P. D., Szent-Gyorgyi A. G., Eisenberg E. Regulation of molluscan actomyosin ATPase activity. J Biol Chem. 1984 Feb 25;259(4):2617–2621. [PMC free article] [PubMed] [Google Scholar]
  4. Chantler P. D., Sellers J. R., Szent-Györgyi A. G. Cooperativity in scallop myosin. Biochemistry. 1981 Jan 6;20(1):210–216. doi: 10.1021/bi00504a035. [DOI] [PubMed] [Google Scholar]
  5. Chantler P. D., Szent-Györgyi A. G. Regulatory light-chains and scallop myosin. Full dissociation, reversibility and co-operative effects. J Mol Biol. 1980 Apr 15;138(3):473–492. doi: 10.1016/s0022-2836(80)80013-1. [DOI] [PubMed] [Google Scholar]
  6. Craig R., Greene L. E., Eisenberg E. Structure of the actin-myosin complex in the presence of ATP. Proc Natl Acad Sci U S A. 1985 May;82(10):3247–3251. doi: 10.1073/pnas.82.10.3247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craig R., Szent-Györgyi A. G., Beese L., Flicker P., Vibert P., Cohen C. Electron microscopy of thin filaments decorated with a Ca2+-regulated myosin. J Mol Biol. 1980 Jun 15;140(1):35–55. doi: 10.1016/0022-2836(80)90355-1. [DOI] [PubMed] [Google Scholar]
  8. Flicker P. F., Wallimann T., Vibert P. Electron microscopy of scallop myosin. Location of regulatory light chains. J Mol Biol. 1983 Sep 25;169(3):723–741. doi: 10.1016/s0022-2836(83)80167-3. [DOI] [PubMed] [Google Scholar]
  9. Hardwicke P. M., Szent-Györgyi A. G. Proximity of regulatory light chains in scallop myosin. J Mol Biol. 1985 May 25;183(2):203–211. doi: 10.1016/0022-2836(85)90213-x. [DOI] [PubMed] [Google Scholar]
  10. Hardwicke P. M., Wallimann T., Szent-Györgyi A. G. Light-chain movement and regulation in scallop myosin. Nature. 1983 Feb 10;301(5900):478–482. doi: 10.1038/301478a0. [DOI] [PubMed] [Google Scholar]
  11. Mornet D., Bertrand R. U., Pantel P., Audemard E., Kassab R. Proteolytic approach to structure and function of actin recognition site in myosin heads. Biochemistry. 1981 Apr 14;20(8):2110–2120. doi: 10.1021/bi00511a007. [DOI] [PubMed] [Google Scholar]
  12. Persechini A., Hartshorne D. J. Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads. Science. 1981 Sep 18;213(4514):1383–1385. doi: 10.1126/science.6455737. [DOI] [PubMed] [Google Scholar]
  13. Sellers J. R., Harvey E. V. Localization of a light-chain binding site on smooth muscle myosin revealed by light-chain overlay of sodium dodecyl sulfate-polyacrylamide electrophoretic gels. J Biol Chem. 1984 Nov 25;259(22):14203–14207. [PubMed] [Google Scholar]
  14. Stafford W. F., 3rd, Szentkiralyi E. M., Szent-Györgyi A. G. Regulatory properties of single-headed fragments of scallop myosin. Biochemistry. 1979 Nov 27;18(24):5273–5280. doi: 10.1021/bi00591a002. [DOI] [PubMed] [Google Scholar]
  15. Stafford W. F., Szent-Györgyi A. G. Physical characterization of myosin light chains. Biochemistry. 1978 Feb 21;17(4):607–614. doi: 10.1021/bi00597a008. [DOI] [PubMed] [Google Scholar]
  16. Sutoh K. Mapping of actin-binding sites on the heavy chain of myosin subfragment 1. Biochemistry. 1983 Mar 29;22(7):1579–1585. doi: 10.1021/bi00276a009. [DOI] [PubMed] [Google Scholar]
  17. Szent-Györgyi A. G., Szentkiralyi E. M., Kendrick-Jonas J. The light chains of scallop myosin as regulatory subunits. J Mol Biol. 1973 Feb 25;74(2):179–203. doi: 10.1016/0022-2836(73)90106-x. [DOI] [PubMed] [Google Scholar]
  18. Szentkiralyi E. M. Tryptic digestion of scallop S1: evidence for a complex between the two light-chains and a heavy-chain peptide. J Muscle Res Cell Motil. 1984 Apr;5(2):147–164. doi: 10.1007/BF00712153. [DOI] [PubMed] [Google Scholar]
  19. Vibert P., Cohen C., Hardwicke P. M., Szent-Györgyi A. G. Electron microscopy of cross-linked scallop myosin. J Mol Biol. 1985 May 25;183(2):283–286. doi: 10.1016/0022-2836(85)90221-9. [DOI] [PubMed] [Google Scholar]
  20. Vibert P., Craig R. Electron microscopy and image analysis of myosin filaments from scallop striated muscle. J Mol Biol. 1983 Apr 5;165(2):303–320. doi: 10.1016/s0022-2836(83)80259-9. [DOI] [PubMed] [Google Scholar]
  21. Vibert P., Craig R. Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin. J Mol Biol. 1982 May 15;157(2):299–319. doi: 10.1016/0022-2836(82)90236-4. [DOI] [PubMed] [Google Scholar]
  22. Wells C., Bagshaw C. R. Calcium regulation of molluscan myosin ATPase in the absence of actin. Nature. 1985 Feb 21;313(6004):696–697. doi: 10.1038/313696a0. [DOI] [PubMed] [Google Scholar]
  23. Winkelmann D. A., Almeda S., Vibert P., Cohen C. A new myosin fragment: visualization of the regulatory domain. Nature. 1984 Feb 23;307(5953):758–760. doi: 10.1038/307758a0. [DOI] [PubMed] [Google Scholar]
  24. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES