Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Dec;50(6):1095–1100. doi: 10.1016/S0006-3495(86)83553-6

Is the K permeability of the resting membrane controlled by the excitable K channel?

D C Chang
PMCID: PMC1329783  PMID: 2432949

Abstract

To test whether or not the potassium permeability of the resting membrane is controlled by the excitable K channels (delayed rectifier), we examined changes in the Na and K permeability ratio, PNa/PK, of the squid axon before and after the excitable K channels were blocked. The blockage of the K channels was accomplished by three independent methods: internal application of tetraethylammonium, internal application of 4-aminopyridine plus Cs, and prolong internal perfusion of NaF solution. The permeability ratio was determined using two different methods: the conventional electrophysiological method and a new method based on the measurements of the hyperpolarizing effect of Na removal. We found that blocking the K channels did not cause a proportional decrease in the K permeability of the resting membrane, suggesting that the semipermeable property of the resting membrane is not determined by the excitable K channels.

Full text

PDF
1098

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almers W., Armstrong C. M. Survival of K+ permeability and gating currents in squid axons perfused with K+-free media. J Gen Physiol. 1980 Jan;75(1):61–78. doi: 10.1085/jgp.75.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAKER P. F., HODGKIN A. L., MEVES H. THE EFFECT OF DILUTING THE INTERNAL SOLUTION ON THE ELECTRICAL PROPERTIES OF A PERFUSED GIANT AXON. J Physiol. 1964 Apr;170:541–560. doi: 10.1113/jphysiol.1964.sp007348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandler W. K., Meves H. Sodium and potassium currents in squid axons perfused with fluoride solutions. J Physiol. 1970 Dec;211(3):623–652. doi: 10.1113/jphysiol.1970.sp009297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang D. C. Dependence of cellular potential on ionic concentrations. Data supporting a modification of the constant field equation. Biophys J. 1983 Aug;43(2):149–156. doi: 10.1016/S0006-3495(83)84335-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang D. C., Liu J. A comparative study of the effects of tetrodotoxin and the removal of external Na+ on the resting potential: evidence of separate pathways for the resting and excitable Na currents in squid axon. Cell Mol Neurobiol. 1985 Dec;5(4):311–320. doi: 10.1007/BF00755398. [DOI] [PubMed] [Google Scholar]
  8. Edwards C., Vyskocil F. The effects of the replacement of K+ by Tl+, Rb+, and NH+4 on the muscle membrane potential. Gen Physiol Biophys. 1984 Jun;3(3):259–264. [PubMed] [Google Scholar]
  9. Freeman A. R. Electrophysiological activity of tetrodotoxin on the resting membrane of the squid giant axon. Comp Biochem Physiol A Comp Physiol. 1971 Sep 1;40(1):71–82. doi: 10.1016/0300-9629(71)90148-4. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Narahashi T., Albuquerque E. X., Deguchi T. Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J Gen Physiol. 1971 Jul;58(1):54–70. doi: 10.1085/jgp.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sauvé R., Bedfer G., Roy G. Single Ca Dependent K Currents in HeLa Cancer Cells. Biophys J. 1984 Jan;45(1):66–68. doi: 10.1016/S0006-3495(84)84111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TASAKI I., HAGIWAR A. S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J Gen Physiol. 1957 Jul 20;40(6):859–885. doi: 10.1085/jgp.40.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES