Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Oct;52(4):563–570. doi: 10.1016/S0006-3495(87)83245-9

A new constitutive formulation for characterizing the mechanical behavior of soft tissues.

J D Humphrey 1, F C Yin 1
PMCID: PMC1330046  PMID: 3676437

Abstract

We present a new constitutive formulation that combines certain desirable features of two previously used approaches (phenomenological and microstructural). Specifically, we assume that certain soft tissues can be idealized as composed of various families of noninteracting fibers and a homogeneous matrix. Both the fibers and the matrix are assumed to follow the gross deformation. Within the usual framework of pseudoelasticity, incompressibility, homogeneity, and the continuum hypothesis, a pseudostrain-energy function (W) is proposed wherein W is expressed in terms of matrix and fibrous contributions. Unlike phenomenological approaches where a W is usually chosen in an ad hoc manner, the present approach can be used to postulate reasonable forms of W based on limited structural information and multiaxial stress-strain data. Illustrative applications of the theory are discussed for visceral pleura and myocardium. Concise structurally motivated constitutive relations result, wherein load-dependent anisotropy, nonlinear material behavior, finite deformations, and incompressibility are accounted for.

Full text

PDF
563

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borg T. K., Caulfield J. B. The collagen matrix of the heart. Fed Proc. 1981 May 15;40(7):2037–2041. [PubMed] [Google Scholar]
  2. Chadwick R. S. Mechanics of the left ventricle. Biophys J. 1982 Sep;39(3):279–288. doi: 10.1016/S0006-3495(82)84518-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chew P. H., Yin F. C., Zeger S. L. Biaxial stress-strain properties of canine pericardium. J Mol Cell Cardiol. 1986 Jun;18(6):567–578. doi: 10.1016/s0022-2828(86)80965-8. [DOI] [PubMed] [Google Scholar]
  4. Chuong C. J., Fung Y. C. Three-dimensional stress distribution in arteries. J Biomech Eng. 1983 Aug;105(3):268–274. doi: 10.1115/1.3138417. [DOI] [PubMed] [Google Scholar]
  5. Comninou M., Yannas I. V. Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J Biomech. 1976;9(7):427–433. doi: 10.1016/0021-9290(76)90084-1. [DOI] [PubMed] [Google Scholar]
  6. Decraemer W. F., Maes M. A., Vanhuyse V. J. An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech. 1980;13(6):463–468. doi: 10.1016/0021-9290(80)90338-3. [DOI] [PubMed] [Google Scholar]
  7. Decraemer W. F., Maes M. A., Vanhuyse V. J., Vanpeperstraete P. A non-linear viscoelastic constitutive equation for soft biological tissues, based upon a structural model. J Biomech. 1980;13(7):559–564. doi: 10.1016/0021-9290(80)90056-1. [DOI] [PubMed] [Google Scholar]
  8. Feit T. S. Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J. 1979 Oct;28(1):143–166. doi: 10.1016/S0006-3495(79)85165-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fung Y. C. Biorheology of soft tissues. Biorheology. 1973 Jun;10(2):139–155. doi: 10.3233/bir-1973-10208. [DOI] [PubMed] [Google Scholar]
  10. Fung Y. C. Elasticity of soft tissues in simple elongation. Am J Physiol. 1967 Dec;213(6):1532–1544. doi: 10.1152/ajplegacy.1967.213.6.1532. [DOI] [PubMed] [Google Scholar]
  11. Fung Y. C., Fronek K., Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol. 1979 Nov;237(5):H620–H631. doi: 10.1152/ajpheart.1979.237.5.H620. [DOI] [PubMed] [Google Scholar]
  12. Hajji M. A., Wilson T. A., Lai-Fook S. J. Improved measurements of shear modulus and pleural membrane tension of the lung. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jul;47(1):175–181. doi: 10.1152/jappl.1979.47.1.175. [DOI] [PubMed] [Google Scholar]
  13. Humphrey J. D., Vawter D. L., Vito R. P. Mechanical behavior of excised canine visceral pleura. Ann Biomed Eng. 1986;14(5):451–466. doi: 10.1007/BF02367365. [DOI] [PubMed] [Google Scholar]
  14. Humphrey J. D., Vawter D. L., Vito R. P. Pseudoelasticity of excised visceral pleura. J Biomech Eng. 1987 May;109(2):115–120. doi: 10.1115/1.3138652. [DOI] [PubMed] [Google Scholar]
  15. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech. 1979;12(6):423–436. doi: 10.1016/0021-9290(79)90027-7. [DOI] [PubMed] [Google Scholar]
  16. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16(1):1–12. doi: 10.1016/0021-9290(83)90041-6. [DOI] [PubMed] [Google Scholar]
  17. Lanir Y. Constitutive equations for the lung tissue. J Biomech Eng. 1983 Nov;105(4):374–380. doi: 10.1115/1.3138435. [DOI] [PubMed] [Google Scholar]
  18. Minns R. J., Soden P. D., Jackson D. S. The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation. J Biomech. 1973 Mar;6(2):153–165. doi: 10.1016/0021-9290(73)90084-5. [DOI] [PubMed] [Google Scholar]
  19. Mirsky I. Ventricular and arterial wall stresses based on large deformation analyses. Biophys J. 1973 Nov;13(11):1141–1159. doi: 10.1016/S0006-3495(73)86051-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pinto J. G., Fung Y. C. Mechanical properties of the heart muscle in the passive state. J Biomech. 1973 Nov;6(6):597–616. doi: 10.1016/0021-9290(73)90017-1. [DOI] [PubMed] [Google Scholar]
  21. Stamenovic D. Mechanical properties of pleural membrane. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1189–1194. doi: 10.1152/jappl.1984.57.4.1189. [DOI] [PubMed] [Google Scholar]
  22. Tong P., Fung Y. C. The stress-strain relationship for the skin. J Biomech. 1976;9(10):649–657. doi: 10.1016/0021-9290(76)90107-x. [DOI] [PubMed] [Google Scholar]
  23. Tözeren A. Static analysis of the left ventricle. J Biomech Eng. 1983 Feb;105(1):39–46. [PubMed] [Google Scholar]
  24. Wilson T. A. Mechanics of the pressure-volume curve of the lung. Ann Biomed Eng. 1981;9(5-6):439–449. doi: 10.1007/BF02364762. [DOI] [PubMed] [Google Scholar]
  25. Wu H. C., Yao R. F. Mechanical behavior of the human annulus fibrosus. J Biomech. 1976;9(1):1–7. doi: 10.1016/0021-9290(76)90132-9. [DOI] [PubMed] [Google Scholar]
  26. Yin F. C., Chew P. H., Zeger S. L. An approach to quantification of biaxial tissue stress-strain data. J Biomech. 1986;19(1):27–37. doi: 10.1016/0021-9290(86)90106-5. [DOI] [PubMed] [Google Scholar]
  27. Yin F. C., Strumpf R. K., Chew P. H., Zeger S. L. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J Biomech. 1987;20(6):577–589. doi: 10.1016/0021-9290(87)90279-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES