Abstract
A kinetic model for the energy transfer in phycobilisome (PBS) rods of Synechococcus 6301 is presented, based on a set of experimental parameters from picosecond studies. It is shown that the enormous complexity of the kinetic system formed by 400-500 chromophores can be greatly simplified by using symmetry arguments. According to the model the transfer along the phycocyanin rods has to be taken into account in both directions, i.e., back and forth along the rods. The corresponding forward rate constants for single step energy transfer between trimeric disks are predicted to be 100-300 ns-1. The model that best fits the experimental data is an asymmetric random walk along the rods with overall exciton kinetics that is essentially trap-limited. The transfer process from the sensitizing to the fluorescing C-PC phycocyanin chromophores (τ ≈ 10 ps) is localized in the hexamers. The transfer from the innermost phycocyanin trimer to the core is calculated to be in the range 36-44 ns-1. These parameters lead to calculated overall rod-core transfer times of 102 and 124 ps for rods containing three and four hexamers, respectively. The model calculations confirm the previously suggested hypothesis that the energy transfer from the rods to the core is essentially described by one dominant exponential function. Extension of the model to heterogeneous PBS rods, i.e., PBS containing also phycoerythrin, is straightforward.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dale R. E., Teale F. W. Number and distribution of chromophore types in native phycobiliproteins. Photochem Photobiol. 1970 Aug;12(2):99–117. doi: 10.1111/j.1751-1097.1970.tb06044.x. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Chan C., Williams R. C., Yeh S. W., Clark J. H. Kinetics of energy flow in the phycobilisome core. Science. 1985 Nov 29;230(4729):1051–1053. doi: 10.1126/science.230.4729.1051. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Lundell D. J., Yamanaka G., Williams R. C. The structure of a "simple" phycobilisome. Ann Microbiol (Paris) 1983 Jul-Aug;134B(1):159–180. doi: 10.1016/s0769-2609(83)80103-3. [DOI] [PubMed] [Google Scholar]
- Glazer A. N. Phycobilisomes: structure and dynamics. Annu Rev Microbiol. 1982;36:173–198. doi: 10.1146/annurev.mi.36.100182.001133. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Yeh S. W., Webb S. P., Clark J. H. Disk-to-Disk Transfer as the Rate-Limiting Step for Energy Flow in Phycobilisomes. Science. 1985 Jan 25;227(4685):419–423. doi: 10.1126/science.227.4685.419. [DOI] [PubMed] [Google Scholar]
- Holzwarth A. R., Wendler J., Suter G. W. Studies on Chromophore Coupling in Isolated Phycobiliproteins: II. Picosecond Energy Transfer Kinetics and Time-Resolved Fluorescence Spectra of C-Phycocyanin from Synechococcus 6301 as a Function of the Aggregation State. Biophys J. 1987 Jan;51(1):1–12. doi: 10.1016/S0006-3495(87)83306-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karukstis K. K., Sauer K. Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. J Cell Biochem. 1983;23(1-4):131–158. doi: 10.1002/jcb.240230112. [DOI] [PubMed] [Google Scholar]
- Koller K. P., Wehrmeyer W., Schneider H. Isolation and characterization of disc-shaped phycobilisomes from the red alga Rhodella violacea. Arch Microbiol. 1977 Feb 4;112(1):61–67. doi: 10.1007/BF00446655. [DOI] [PubMed] [Google Scholar]
- Pearlstein R. M. Migration and trapping of excitation quanta in photosynthetic units. Brookhaven Symp Biol. 1966;19:8–15. [PubMed] [Google Scholar]
- Porter G., Tredwell C. J., Searle G. F., Barber J. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta. 1978 Feb 9;501(2):232–245. doi: 10.1016/0005-2728(78)90029-4. [DOI] [PubMed] [Google Scholar]
- Scheer J. K. Effect of placement in the order of competition on scores of Nebraska high school students. Res Q. 1973 Mar;44(1):79–85. [PubMed] [Google Scholar]
- Schirmer T., Bode W., Huber R., Sidler W., Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol. 1985 Jul 20;184(2):257–277. doi: 10.1016/0022-2836(85)90379-1. [DOI] [PubMed] [Google Scholar]
- Schirmer T., Huber R., Schneider M., Bode W., Miller M., Hackert M. L. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol. 1986 Apr 20;188(4):651–676. doi: 10.1016/s0022-2836(86)80013-4. [DOI] [PubMed] [Google Scholar]
- Searle G. F., Barber J., Porter G., Tredwell C. J. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light harvesting complex (phycobilisomes). Biochim Biophys Acta. 1978 Feb 9;501(2):246–256. doi: 10.1016/0005-2728(78)90030-0. [DOI] [PubMed] [Google Scholar]
- Wildman R. B., Bowen C. C. Phycobilisomes in blue-green algae. J Bacteriol. 1974 Feb;117(2):866–881. doi: 10.1128/jb.117.2.866-881.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]