Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jan;55(1):173–182. doi: 10.1016/S0006-3495(89)82789-4

Regional stress in a noncircular cylinder.

R F Janz 1, S Ozpetek 1, L E Ginzton 1, M M Laks 1
PMCID: PMC1330452  PMID: 2930818

Abstract

Several mathematical formulas are presented for estimating regional average circumferential stress and shear stress in a thick-wall, noncircular cylinder with a plane of symmetry. The formulas require images of exterior and interior chamber silhouettes plus surface pressures. The formulas are primarily intended for application to the left ventricle in the short axis plane near the base (where the meridional radius of curvature is normally much larger than the circumferential radius of curvature) and to blood vessels. The formulas predict stresses in a variety of chambers to within 3% of finite element values determined from a large-scale structural analysis computer program called ANSYS.

Full text

PDF
176

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arts T., Reneman R. S., Veenstra P. C. A model of the mechanics of the left ventricle. Ann Biomed Eng. 1979;7(3-4):299–318. doi: 10.1007/BF02364118. [DOI] [PubMed] [Google Scholar]
  2. DePace N. L., Ren J. F., Iskandrian A. S., Kotler M. N., Hakki A. H., Segal B. L. Correlation of echocardiographic wall stress and left ventricular pressure and function in aortic stenosis. Circulation. 1983 Apr;67(4):854–859. doi: 10.1161/01.cir.67.4.854. [DOI] [PubMed] [Google Scholar]
  3. Demer L. L., Yin F. C. Passive biaxial mechanical properties of isolated canine myocardium. J Physiol. 1983 Jun;339:615–630. doi: 10.1113/jphysiol.1983.sp014738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huisman R. M., Sipkema P., Westerhof N., Elzinga G. Comparison of models used to calculate left ventricular wall force. Med Biol Eng Comput. 1980 Mar;18(2):133–144. doi: 10.1007/BF02443288. [DOI] [PubMed] [Google Scholar]
  5. Jan K. M. Distribution of myocardial stress and its influence on coronary blood flow. J Biomech. 1985;18(11):815–820. doi: 10.1016/0021-9290(85)90478-6. [DOI] [PubMed] [Google Scholar]
  6. Janz R. F. Estimation of local myocardial stress. Am J Physiol. 1982 May;242(5):H875–H881. doi: 10.1152/ajpheart.1982.242.5.H875. [DOI] [PubMed] [Google Scholar]
  7. Janz R. F., Waldron R. J. Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ Res. 1978 Feb;42(2):255–263. doi: 10.1161/01.res.42.2.255. [DOI] [PubMed] [Google Scholar]
  8. Janz R. F., Waldron R. J. Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. Bull Math Biol. 1976;38(4):401–413. doi: 10.1007/BF02462214. [DOI] [PubMed] [Google Scholar]
  9. McPherson D. D., Skorton D. J., Kodiyalam S., Petree L., Noel M. P., Kieso R., Kerber R. E., Collins S. M., Chandran K. B. Finite element analysis of myocardial diastolic function using three-dimensional echocardiographic reconstructions: application of a new method for study of acute ischemia in dogs. Circ Res. 1987 May;60(5):674–682. doi: 10.1161/01.res.60.5.674. [DOI] [PubMed] [Google Scholar]
  10. Mirsky I., Pfeffer J. M., Pfeffer M. A., Braunwald E. The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ Res. 1983 Dec;53(6):767–778. doi: 10.1161/01.res.53.6.767. [DOI] [PubMed] [Google Scholar]
  11. Pouleur H., Rousseau M. F., van Eyll C., Charlier A. A. Assessment of regional left ventricular relaxation in patients with coronary artery disease: importance of geometric factors and changes in wall thickness. Circulation. 1984 Apr;69(4):696–702. doi: 10.1161/01.cir.69.4.696. [DOI] [PubMed] [Google Scholar]
  12. St John Sutton M. G., Plappert T. A., Hirshfeld J. W., Reichek N. Assessment of left ventricular mechanics in patients with asymptomatic aortic regurgitation: a two-dimensional echocardiographic study. Circulation. 1984 Feb;69(2):259–268. doi: 10.1161/01.cir.69.2.259. [DOI] [PubMed] [Google Scholar]
  13. Streeter D. D., Jr, Spotnitz H. M., Patel D. P., Ross J., Jr, Sonnenblick E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969 Mar;24(3):339–347. doi: 10.1161/01.res.24.3.339. [DOI] [PubMed] [Google Scholar]
  14. Streeter D. D., Jr, Vaishnav R. N., Patel D. J., Spotnitz H. M., Ross J., Jr, Sonnenblick E. H. Stress distribution in the canine left ventricle during diastole and systole. Biophys J. 1970 Apr;10(4):345–363. doi: 10.1016/S0006-3495(70)86306-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tözeren A. Static analysis of the left ventricle. J Biomech Eng. 1983 Feb;105(1):39–46. [PubMed] [Google Scholar]
  16. Waldman L. K., Fung Y. C., Covell J. W. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res. 1985 Jul;57(1):152–163. doi: 10.1161/01.res.57.1.152. [DOI] [PubMed] [Google Scholar]
  17. Yin F. C., Chew P. H., Zeger S. L. An approach to quantification of biaxial tissue stress-strain data. J Biomech. 1986;19(1):27–37. doi: 10.1016/0021-9290(86)90106-5. [DOI] [PubMed] [Google Scholar]
  18. Yin F. C. Ventricular wall stress. Circ Res. 1981 Oct;49(4):829–842. doi: 10.1161/01.res.49.4.829. [DOI] [PubMed] [Google Scholar]
  19. Zile M. R., Gaasch W. H., Carroll J. D., Levine H. J. Chronic mitral regurgitation: predictive value of preoperative echocardiographic indexes of left ventricular function and wall stress. J Am Coll Cardiol. 1984 Feb;3(2 Pt 1):235–242. doi: 10.1016/s0735-1097(84)80006-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES