Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Apr;55(4):703–712. doi: 10.1016/S0006-3495(89)82869-3

Detection of the heme perturbations caused by the quaternary R----T transition in oxyhemoglobin trout IV by resonance Raman scattering.

R Schweitzer-Stenner 1, D Wedekind 1, W Dreybrodt 1
PMCID: PMC1330554  PMID: 2720068

Abstract

The depolarization ratio dispersion and the respective excitation profiles of two structural sensitive Raman lines of oxyhemoglobin-trout IV (1,375 and 1,638 cm-1) have been measured at pH-values between 6.5 and 8.5. They were analyzed by employing a fifth order time dependent perturbation theory to calculate the polarizability tensor. This provides information about the pH-dependence of parameters reflecting symmetry classified distortions of the prosthetic heme groups. In order to correlate these distortions with functional properties of the molecule the following protocol has been employed: (a) a titration model was formulated relating each conformation of the molecule to a distinct set of distortion parameters the incoherent superposition of which provides the respective distortion parameter obtained from our Raman data. (b) The thermodynamic constants determining the equilibrium between these molecular conformations (i.e., the quaternary T and R-states, the low affinity t and the high affinity r-states of the distinct subunits, the pK-values of the Root- and Bohr groups) were obtained from a set of O2-binding curves that were analyzed in terms of an allosteric model suggested by Herzfeld and Stanley 1974. J. Mol. Biol. 82:231. The application of this procedure yields excellent reproduction of the pH-dependent effective distortion parameters of both Raman lines investigated. Thus established correlation between hemoglobin function (O2-binding) and structure (asymmetric perturbation of the hemegroup) provides some interesting insights into the molecular basis of the allosteric Root effect.

Full text

PDF
705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K. Energetics of subunit assembly and ligand binding in human hemoglobin. Biophys J. 1980 Oct;32(1):331–346. doi: 10.1016/S0006-3495(80)84960-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
  3. Brunori M., Coletta M., Giardina B., Wyman J. A macromolecular transducer as illustrated by trout hemoglobin IV. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4310–4312. doi: 10.1073/pnas.75.9.4310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunzel U., Dreybrodt W., Schweitzer-Stenner R. pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl- concentrations. Biophys J. 1986 May;49(5):1069–1076. doi: 10.1016/S0006-3495(86)83735-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chance M. R., Parkhurst L. J., Powers L. S., Chance B. Movement of Fe with respect to the heme plane in the R-T transition of carp hemoglobin. An extended x-ray absorption fine structure study. J Biol Chem. 1986 May 5;261(13):5689–5692. [PubMed] [Google Scholar]
  6. Cobau W. G., LeGrange J. D., Austin R. H. Kinetic differences at low temperatures between R and T state carbon monoxide-carp hemoglobin. Biophys J. 1985 Jun;47(6):781–786. doi: 10.1016/S0006-3495(85)83981-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Condò S. G., Giardina B., Bellelli A., Brunori M. Xenopus laevis hemoglobin and its hybrids with hemoglobin A+. Biochemistry. 1987 Oct 20;26(21):6718–6722. doi: 10.1021/bi00395a022. [DOI] [PubMed] [Google Scholar]
  8. Friedman J. M., Scott T. W., Stepnoski R. A., Ikeda-Saito M., Yonetani T. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study. J Biol Chem. 1983 Sep 10;258(17):10564–10572. [PubMed] [Google Scholar]
  9. Friedman J. M., Stepnoski R. A., Stavola M., Ondrias M. R., Cone R. L. Ligation and quaternary structure induced changes in the heme pocket of hemoglobin: a transient resonance Raman study. Biochemistry. 1982 Apr 27;21(9):2022–2028. doi: 10.1021/bi00538a008. [DOI] [PubMed] [Google Scholar]
  10. Gelin B. R., Karplus M. Mechanism of tertiary structural change in hemoglobin. Proc Natl Acad Sci U S A. 1977 Mar;74(3):801–805. doi: 10.1073/pnas.74.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giardina B., Brunori M., Binotti I., Giovenco S., Antonini E. Studies on the properties of fish hemoglobins. Kinetics of reaction with oxygen and carbon monoxide of the isolated hemoglobin components from trout (Salmo irideus). Eur J Biochem. 1973 Nov 15;39(2):571–579. doi: 10.1111/j.1432-1033.1973.tb03156.x. [DOI] [PubMed] [Google Scholar]
  12. Herzfeld J., Stanley H. E. A general approach to co-operativity and its application to the oxygen equilibrium of hemoglobin and its effectors. J Mol Biol. 1974 Jan 15;82(2):231–265. doi: 10.1016/0022-2836(74)90343-x. [DOI] [PubMed] [Google Scholar]
  13. Hoard J. L. Stereochemistry of hemes and other metalloporphyrins. Science. 1971 Dec 24;174(4016):1295–1302. doi: 10.1126/science.174.4016.1295. [DOI] [PubMed] [Google Scholar]
  14. Kilmartin J. V., Fogg J. H., Perutz M. F. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry. 1980 Jul 8;19(14):3189–3183. doi: 10.1021/bi00555a013. [DOI] [PubMed] [Google Scholar]
  15. Kwiatkowski L. D., Noble R. W. The contribution of histidine (HC3) (146 beta) to the R state Bohr effect of human hemoglobin. J Biol Chem. 1982 Aug 10;257(15):8891–8895. [PubMed] [Google Scholar]
  16. Moffat J. K. Structure and functional properties of chemically modified horse hemoglobin. II. X-ray studies. J Mol Biol. 1971 May 28;58(1):79–88. doi: 10.1016/0022-2836(71)90233-6. [DOI] [PubMed] [Google Scholar]
  17. Nagai K., Kitagawa T., Morimoto H. Quaternary structures and low frequency molecular vibrations of haems of deoxy and oxyhaemoglobin studied by resonance raman scattering. J Mol Biol. 1980 Jan 25;136(3):271–289. doi: 10.1016/0022-2836(80)90374-5. [DOI] [PubMed] [Google Scholar]
  18. Perutz M. F., Brunori M. Stereochemistry of cooperative effects in fish an amphibian haemoglobins. Nature. 1982 Sep 30;299(5882):421–426. doi: 10.1038/299421a0. [DOI] [PubMed] [Google Scholar]
  19. Perutz M. F., Fermi G., Shih T. B. Structure of deoxyhemoglobin Cowtown [His HC3(146) beta----Leu]: origin of the alkaline Bohr effect and electrostatic interactions in hemoglobin. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4781–4784. doi: 10.1073/pnas.81.15.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perutz M. F., Gronenborn A. M., Clore G. M., Fogg J. H., Shih D. T. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices. J Mol Biol. 1985 Jun 5;183(3):491–498. doi: 10.1016/0022-2836(85)90016-6. [DOI] [PubMed] [Google Scholar]
  21. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  22. Rousseau D. L., Tan S. L., Ondrias M. R., Ogawa S., Noble R. W. Absence of cooperative energy at the heme in liganded hemoglobins. Biochemistry. 1984 Jun 19;23(13):2857–2865. doi: 10.1021/bi00308a003. [DOI] [PubMed] [Google Scholar]
  23. Russu I. M., Ho N. T., Ho C. A proton nuclear magnetic resonance investigation of histidyl residues in human normal adult hemoglobin. Biochemistry. 1982 Sep 28;21(20):5031–5043. doi: 10.1021/bi00263a029. [DOI] [PubMed] [Google Scholar]
  24. Schweitzer-Stenner R., Dreybrodt W. An extended Monod-Wyman-Changeaux-model expressed in terms of the Herzfeld-Stanley formalism applied to oxygen and carbonmonoxide binding curves of hemoglobin trout IV. Biophys J. 1989 Apr;55(4):691–701. doi: 10.1016/S0006-3495(89)82868-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schweitzer-Stenner R., Wedekind D., Dreybrodt W. Correspondence of the pK values of oxyHb-titration states detected by resonance Raman scattering to kinetic data of ligand dissociation and association. Biophys J. 1986 May;49(5):1077–1088. doi: 10.1016/S0006-3495(86)83736-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  27. Shelnutt J. A., Rousseau D. L., Friedman J. M., Simon S. R. Protein-heme interaction in hemoglobin: evidence from Raman difference spectroscopy. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4409–4413. doi: 10.1073/pnas.76.9.4409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Warshel A. Energy-structure correlation in metalloporphyrins and the control of oxygen binding by hemoglobin. Proc Natl Acad Sci U S A. 1977 May;74(5):1789–1793. doi: 10.1073/pnas.74.5.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wedekind D., Schweitzer-Stenner R., Dreybrodt W. Heme-apoprotein interaction in the modified oxyhemoglobin-bis(N-maleimidomethyl)ether and in oxyhemoglobin at high Cl-concentration detected by resonance Raman scattering. Biochim Biophys Acta. 1985 Aug 23;830(3):224–232. doi: 10.1016/0167-4838(85)90278-x. [DOI] [PubMed] [Google Scholar]
  30. el Naggar S., Dreybrodt W., Schweitzer-Stenner R. Haem-apoprotein interactions detected by resonance Raman scattering in Mb- and Hb-derivates lacking the saltbridge His146 beta-Asp94 beta. Eur Biophys J. 1985;12(1):43–49. doi: 10.1007/BF00254094. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES