Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Oct;242(1):35–48. doi: 10.1113/jphysiol.1974.sp010692

Steady-state contribution of the sodium pump to the resting potential of a molluscan neurone

A L F Gorman, M F Marmor
PMCID: PMC1330598  PMID: 4436827

Abstract

1. The electrogenic contribution of the Na+-K+ exchange pump to the membrane potential of the Anisodoris giant neurone (G cell) was examined under steady-state and Na+ loaded conditions.

2. The membrane potential was variable for the first 1-4 hr after impalement, but, in the absence of experimental manipulation, remained constant thereafter. The average membrane potential for ten cells maintained at 11-13 °C and measured 5-36 hr after impalement was 55·8 ± 1·0 mV (S.E. of mean).

3. Low concentrations of external ACh caused a reversible increase in membrane Na+ conductance. Brief exposure to ACh proved a fast and reversible technique to load the cell with Na+ ions, and transiently stimulate the electrogenic Na+ pump.

4. In ten cells maintained from 5 to 36 hr at 11-13° C the reduction in membrane potential produced by inhibition of the Na+ pump with ouabain was remarkably constant between cells and averaged + 9·7 mV.

5. Cells maintained under steady-state conditions (at 11-13° C) for extended periods of time were shown to be relatively insensitive to changes in temperature and to small changes in external K+.

6. It is estimated that the Na+-K+ exchange pump contributes approximately - 10 mV to the steady-state resting potential of the G cell, and that two Na+ ions are extruded for every K+ ion transported into the cell per pump cycle.

Full text

PDF
39

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodwick M. S., Junge D. Post-stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone. J Physiol. 1972 Jun;223(2):549–570. doi: 10.1113/jphysiol.1972.sp009862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpenter D. O. Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J Gen Physiol. 1967 Jul;50(6):1469–1484. doi: 10.1085/jgp.50.6.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christoffersen G. R. Steady state contribution of the Na, K-pump to the membrane potential in identified neurons of a terrestrial snail, Helix pomatia. Acta Physiol Scand. 1972 Dec;86(4):498–514. doi: 10.1111/j.1748-1716.1972.tb05352.x. [DOI] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garrahan P. J., Glynn I. M. The stoicheiometry of the sodium pump. J Physiol. 1967 Sep;192(1):217–235. doi: 10.1113/jphysiol.1967.sp008297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gorman A. L., Marmor M. F. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J Physiol. 1970 Nov;210(4):897–917. doi: 10.1113/jphysiol.1970.sp009248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorman A. L., Marmor M. F. Long-term effect of ouabain and sodium pump inhibition on a neuronal membrane. J Physiol. 1974 Oct;242(1):49–60. doi: 10.1113/jphysiol.1974.sp010693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman A. L., Marmor M. F. Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J Physiol. 1970 Nov;210(4):919–931. doi: 10.1113/jphysiol.1970.sp009249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorman A. L., Mirolli M. Axonal localization of an excitatory post-synaptic potential in a molluscan neurone. J Exp Biol. 1970 Dec;53(3):727–736. doi: 10.1242/jeb.53.3.727. [DOI] [PubMed] [Google Scholar]
  10. Gorman A. L., Mirolli M. The passive electrical properties of the membrane of a molluscan neurone. J Physiol. 1972 Dec;227(1):35–49. doi: 10.1113/jphysiol.1972.sp010018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kerkut G. A., Meech R. W. The effect of ions on the membrane potential of snail neurones. Comp Biochem Physiol. 1967 Feb;20(2):411–429. doi: 10.1016/0010-406x(67)90257-5. [DOI] [PubMed] [Google Scholar]
  12. MULLINS L. J., NODA K. THE INFLUENCE OF SODIUM-FREE SOLUTIONS ON THE MEMBRANE POTENTIAL OF FROG MUSCLE FIBERS. J Gen Physiol. 1963 Sep;47:117–132. doi: 10.1085/jgp.47.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marmor M. F. The effects of temperature and ions on the current-voltage relation and electrical characteristics of a molluscan neurone. J Physiol. 1971 Nov;218(3):573–598. doi: 10.1113/jphysiol.1971.sp009634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marmor M. F. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone. J Physiol. 1971 Nov;218(3):599–608. doi: 10.1113/jphysiol.1971.sp009635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moreton R. B. An investigation of the electrogenic sodium pump in snail neurones, using the constant-field theory. J Exp Biol. 1969 Aug;51(1):181–201. doi: 10.1242/jeb.51.1.181. [DOI] [PubMed] [Google Scholar]
  16. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  17. Russell J. M., Brown A. M. Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):499–518. doi: 10.1085/jgp.60.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  19. Thomas R. C. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol. 1969 Apr;201(2):495–514. doi: 10.1113/jphysiol.1969.sp008769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES