Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Oct;242(2):471–487. doi: 10.1113/jphysiol.1974.sp010718

Mechanism of nerve membrane depolarization caused by grayanotoxin I

Toshio Narahashi, Issei Seyama
PMCID: PMC1330678  PMID: 4455829

Abstract

1. The mechanism of depolarization of squid axon membranes caused by grayanotoxin I has been studied by means of internal perfusion and voltage clamp techniques.

2. The depolarization induced by either internal or external application of grayanotoxin I was reversed by decreasing the external sodium concentration from 449 to 1 mm.

3. No depolarization was observed when both external and internal media were devoid of sodium ions, indicating that the depolarization by grayanotoxin I in normal media is due to a specific increase in resting sodium permeability.

4. The resting sodium permeability as measured by voltage clamp was increased to 1·31 × 10-6 cm/sec by internal application of 1 × 10-5 m grayanotoxin I, an increase by a factor of about 90.

5. The apparent dissociation constant of internally applied grayanotoxin I in increasing the resting sodium permeability was estimated to be 4·12 × 10-5 m, and the toxin interacts with the membrane receptor on a one-to-one stoichiometric basis.

6. Tetrodotoxin antagonized the action of grayanotoxin I in increasing the resting sodium permeability in a non-competitive manner.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELMAN W. J., Jr, TAYLOR R. E. EFFECTS OF REPLACEMENT OF EXTERNAL SODIUM CHLORIDE WITH SUCROSE ON MEMBRANE CURRENTS OF THE SQUID GIANT AXON. Biophys J. 1964 Nov;4:451–463. doi: 10.1016/s0006-3495(64)86795-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albuquerque E. X., Seyama I., Narahashi T. Characterization of batrachotoxin-induced depolarization of the squid giant axons. J Pharmacol Exp Ther. 1973 Feb;184(2):308–314. [PubMed] [Google Scholar]
  3. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
  5. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colquhoun D., Henderson R., Ritchie J. M. The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J Physiol. 1972 Dec;227(1):95–126. doi: 10.1113/jphysiol.1972.sp010022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuervo L. A., Adelman W. J., Jr Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J Gen Physiol. 1970 Mar;55(3):309–335. doi: 10.1085/jgp.55.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deguchi T., Sakai Y. Sustained after-depolarization in grayanotoxin-treated muscle cell membrane. Nihon Seirigaku Zasshi. 1967;29(4):172–173. [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B. Sodium permeability in toad nerve and in squid nerve. J Physiol. 1960 Jun;152:159–166. doi: 10.1113/jphysiol.1960.sp006477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freeman A. R. Electrophysiological activity of tetrodotoxin on the resting membrane of the squid giant axon. Comp Biochem Physiol A Comp Physiol. 1971 Sep 1;40(1):71–82. doi: 10.1016/0300-9629(71)90148-4. [DOI] [PubMed] [Google Scholar]
  11. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hafemann D. R. Binding of radioactive tetrodotoxin to nerve membrane preparations. Biochim Biophys Acta. 1972 May 9;266(2):548–556. doi: 10.1016/0005-2736(72)90110-1. [DOI] [PubMed] [Google Scholar]
  15. Keynes R. D., Ritchie J. M., Rojas E. The binding of tetrodotoxin to nerve membranes. J Physiol. 1971 Feb;213(1):235–254. doi: 10.1113/jphysiol.1971.sp009379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kumazawa Z., Iriye R. Stereochemistry of grayanotoxin-II. Tetrahedron Lett. 1970 Mar;(12):927–930. doi: 10.1016/s0040-4039(01)97868-2. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto T., Watanabe M. Stereochemistry of grayanotoxin. Tetrahedron Lett. 1968 Dec;(57):6019–6022. doi: 10.1016/s0040-4039(00)70782-9. [DOI] [PubMed] [Google Scholar]
  18. Moore J. W., Narahashi T., Shaw T. I. An upper limit to the number of sodium channels in nerve membrane? J Physiol. 1967 Jan;188(1):99–105. doi: 10.1113/jphysiol.1967.sp008126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Narahashi T., Albuquerque E. X., Deguchi T. Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J Gen Physiol. 1971 Jul;58(1):54–70. doi: 10.1085/jgp.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Narahashi T., Anderson N. C. Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axons. Toxicol Appl Pharmacol. 1967 May;10(3):529–547. doi: 10.1016/0041-008x(67)90092-0. [DOI] [PubMed] [Google Scholar]
  21. Narahashi T., Anderson N. C., Moore J. W. Comparison of tetrodotoxin and procaine in internally perfused squid giant axons. J Gen Physiol. 1967 May;50(5):1413–1428. doi: 10.1085/jgp.50.5.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Narahashi T., Anderson N. C., Moore J. W. Tetrodotoxin does not block excitation from inside the nerve membrane. Science. 1966 Aug 12;153(3737):765–767. doi: 10.1126/science.153.3737.765. [DOI] [PubMed] [Google Scholar]
  23. Ota M., Narahashi T., Keeler R. F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J Pharmacol Exp Ther. 1973 Jan;184(1):143–154. [PubMed] [Google Scholar]
  24. Seyama I. Effect of grayanotoxin 1 on the electrical properties of rat skeletal muscle fibers. Jpn J Physiol. 1970 Aug;20(4):381–393. doi: 10.2170/jjphysiol.20.381. [DOI] [PubMed] [Google Scholar]
  25. Seyama I., Narahashi T. Increase in sodium permeability of squid axon membranes by -dihydrograyanotoxin II. J Pharmacol Exp Ther. 1973 Feb;184(2):299–307. [PubMed] [Google Scholar]
  26. Tokuyama T., Daly J., Witkop B. The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs. J Am Chem Soc. 1969 Jul 2;91(14):3931–3938. doi: 10.1021/ja01042a042. [DOI] [PubMed] [Google Scholar]
  27. Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]
  28. Wang C. M., Narahashi T., Scuka M. Mechanism of negative temperature coefficient of nerve blocking action of allethrin. J Pharmacol Exp Ther. 1972 Sep;182(3):442–453. [PubMed] [Google Scholar]
  29. Wu C. H., Narahashi T. Mechanism of action of propranolol on squid axon membranes. J Pharmacol Exp Ther. 1973 Jan;184(1):155–162. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES