Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Feb;245(1):81–90. doi: 10.1113/jphysiol.1975.sp010836

Observation on the localization of mechanoreceptors in the kidney and afferent nerve fibres in the renal nerves in the rabbit.

A Niijima
PMCID: PMC1330846  PMID: 1127615

Abstract

1. The distribution and localization of mechanoreceptors in the kidney were studied by recording afferent impulses from the renal nerve bundle or from single nerve fibres in the isoloted kidney preparation in the rabbit. 2. It was observed that mechanoreceptors are distributed in the cranial, central and caudal portions as well as the pelvic portion of the kidney. Diameter range of single nerve fibres from which afferent impulses were recorded was from 2 to 8 mum. 3. Histological studies show that the renal nerve possesses abundant non-myelinated nerve fibres with a relatively small number of myelinated nerve fibres. The myelinated axons had diameters ranging from 0-5 to 13-4 mum and the peak of the unimodal distribution curve was 1-5--2-4 mum.

Full text

PDF
82

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACHESON G. H., REMOLINA J. The temporal course of the effects of post-ganglionic axotomy on the inferior mesenteric ganglion of the cat. J Physiol. 1955 Mar 28;127(3):603–616. doi: 10.1113/jphysiol.1955.sp005281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitken J. T., Sharman M., Young J. Z. Maturation of regenerating nerve fibres with various peripheral connexions. J Anat. 1947 Jan;81(Pt 1):1–22.2. [PMC free article] [PubMed] [Google Scholar]
  3. Aström A., Crafoord J. Afferent activity recorded in the kidney nerves of rats. Acta Physiol Scand. 1967 May;70(1):10–15. doi: 10.1111/j.1748-1716.1967.tb03595.x. [DOI] [PubMed] [Google Scholar]
  4. Aström A., Crafoord J. Afferent and efferent activity in the renal nerves of cats. Acta Physiol Scand. 1968 Sep-Oct;74(1):69–78. doi: 10.1111/j.1748-1716.1968.tb04215.x. [DOI] [PubMed] [Google Scholar]
  5. BROWN G. L., PASCOE J. E. The effect of degenerative section of ganglionic axons on transmission through the ganglion. J Physiol. 1954 Mar 29;123(3):565–573. doi: 10.1113/jphysiol.1954.sp005071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BUTSON A. R. C. Regeneration of the cervical sympathetic. Br J Surg. 1950 Oct;38(150):223–239. doi: 10.1002/bjs.18003815011. [DOI] [PubMed] [Google Scholar]
  7. Beacham W. S., Kunze D. L. Renal receptors evoking a spinal vasometer reflex. J Physiol. 1969 Mar;201(1):73–85. doi: 10.1113/jphysiol.1969.sp008743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Black I. B., Hendry I. A., Iversen L. L. The role of post-synaptic neurones in the biochemical maturation of presynaptic cholinergic nerve terminals in a mouse sympathetic ganglion. J Physiol. 1972 Feb;221(1):149–159. doi: 10.1113/jphysiol.1972.sp009745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Black I. B., Hendry I. A., Iversen L. L. Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion. Brain Res. 1971 Nov;34(2):229–240. doi: 10.1016/0006-8993(71)90278-2. [DOI] [PubMed] [Google Scholar]
  10. Blinzinger K., Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85(2):145–157. doi: 10.1007/BF00325030. [DOI] [PubMed] [Google Scholar]
  11. Borysenko J. Z., Revel J. P. Experimental manipulation of desmosome structure. Am J Anat. 1973 Aug;137(4):403–421. doi: 10.1002/aja.1001370404. [DOI] [PubMed] [Google Scholar]
  12. Boyle F. C., Gillespie J. S. Accumulation and loss of noradrenaline central to a constriction on adrenergic nerves. Eur J Pharmacol. 1970 Sep 1;12(1):77–84. doi: 10.1016/0014-2999(70)90031-2. [DOI] [PubMed] [Google Scholar]
  13. Brimble M. J., Wallis D. I., Woodward B. Facilitation and inhibition of cell groups within the superior cervical ganglion of the rabbit. J Physiol. 1972 Nov;226(3):629–652. doi: 10.1113/jphysiol.1972.sp010001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chamley J. H., Mark G. E., Burnstock G. Sympathetic ganglia in culture. II. Accessory cells. Z Zellforsch Mikrosk Anat. 1972;135(3):315–327. doi: 10.1007/BF00307179. [DOI] [PubMed] [Google Scholar]
  15. Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
  16. DE CASTRO F. Sur la structure de la synapse dans les chemocepteurs; leur mécanisme d'excitation et rôle dans la circulation sanguine locale. Acta Physiol Scand. 1951 Feb 21;22(1):14–43. doi: 10.1111/j.1748-1716.1951.tb00747.x. [DOI] [PubMed] [Google Scholar]
  17. DOWNMAN C. B. B., ECCLES J. C., MCINTYRE A. K. Functional changes in chromatolysed motoneurones. J Comp Neurol. 1953 Feb;98(1):9–36. doi: 10.1002/cne.900980104. [DOI] [PubMed] [Google Scholar]
  18. Dunant Y. Organisation topographique et fonctionnelle du ganglion cervical supérieur chez le Rat. J Physiol (Paris) 1967 Jan-Feb;59(1):17–38. [PubMed] [Google Scholar]
  19. Dyck P. J., Hopkins A. P. Electron microscopic observations on degeneration and regeneration of unmyelinated fibres. Brain. 1972;95(2):233–234. doi: 10.1093/brain/95.2.223. [DOI] [PubMed] [Google Scholar]
  20. ECCLES J. C., LIBET B., YOUNG R. R. The behaviour of chromatolysed motoneurones studied by intracellular recording. J Physiol. 1958 Aug 29;143(1):11–40. doi: 10.1113/jphysiol.1958.sp006041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. EYZAGUIRRE C., UCHIZONO K. Observations on the fibre content of nerves reaching the carotid body of the cat. J Physiol. 1961 Dec;159:268–281. doi: 10.1113/jphysiol.1961.sp006807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Elfvin L. G. Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. 3. The structure and distribution of the axodendritic and dendrodendritic contacts. J Ultrastruct Res. 1971 Nov;37(3):432–448. doi: 10.1016/s0022-5320(71)80137-5. [DOI] [PubMed] [Google Scholar]
  23. Elfvin L. G. Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. I. Observations on the cell surface of the postganglionic perikarya. J Ultrastruct Res. 1971 Nov;37(3):411–425. doi: 10.1016/s0022-5320(71)80135-1. [DOI] [PubMed] [Google Scholar]
  24. Erulkar S. D., Woodward J. K. Intracellular recording from mammalian superior cervical ganglion in situ. J Physiol. 1968 Nov;199(1):189–203. doi: 10.1113/jphysiol.1968.sp008648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grillo M. A. Electron microscopy of sympathetic tissues. Pharmacol Rev. 1966 Mar;18(1):387–399. [PubMed] [Google Scholar]
  26. Hopkins A. P., Lambert E. H. Conduction in regenerating unmyelinated fibres. Brain. 1972;95(2):213–222. doi: 10.1093/brain/95.2.213. [DOI] [PubMed] [Google Scholar]
  27. Horoupian D. S., Ghetti B., Wiśniewski H. M. Retrograde transneuronal degeneration of optic fibers and their terminals in lateral geniculate nucleus of rhesus monkey. Brain Res. 1973 Jan 30;49(2):257–275. doi: 10.1016/0006-8993(73)90422-8. [DOI] [PubMed] [Google Scholar]
  28. Hunt C. C., Riker W. K. Properties of frog sympathetic neurons in normal ganglia and after axon section. J Neurophysiol. 1966 Nov;29(6):1096–1114. doi: 10.1152/jn.1966.29.6.1096. [DOI] [PubMed] [Google Scholar]
  29. Jacobowitz D., Woodward J. K. Adrenergic neurons in the cat superior cervical ganglion and cervical sympathetic nerve trunk. A histochemical study. J Pharmacol Exp Ther. 1968 Aug;162(2):213–226. [PubMed] [Google Scholar]
  30. Kerns J. M., Hinsman E. J. Neuroglial response to sciatic neurectomy. II. Electron microscopy. J Comp Neurol. 1973 Oct 1;151(3):255–280. doi: 10.1002/cne.901510304. [DOI] [PubMed] [Google Scholar]
  31. Kirpatrick J. B. Chromatolysis in the hypoglossal nucleus of the rat: an electron microscopic analysis. J Comp Neurol. 1968 Jan;132(1):189–212. doi: 10.1002/cne.901320110. [DOI] [PubMed] [Google Scholar]
  32. Kuno M., Llinás R. Alterations of synaptic action in chromatolysed motoneurones of the cat. J Physiol. 1970 Nov;210(4):823–838. doi: 10.1113/jphysiol.1970.sp009244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kuno M., Llinás R. Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J Physiol. 1970 Nov;210(4):807–821. doi: 10.1113/jphysiol.1970.sp009243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Langley J. N. On the Regeneration of Pre-Ganglionic and of Post-Ganglionic Visceral Nerve Fibres. J Physiol. 1897 Nov 20;22(3):215–230. doi: 10.1113/jphysiol.1897.sp000688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lieberman A. R. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol. 1971;14:49–124. doi: 10.1016/s0074-7742(08)60183-x. [DOI] [PubMed] [Google Scholar]
  36. Mark R. F., Marotte L. R., Mart P. E. The mechanism of selective reinnervation of fish eye muscles. IV. Identification of repressed synapses. Brain Res. 1972 Nov 13;46:149–157. doi: 10.1016/0006-8993(72)90012-1. [DOI] [PubMed] [Google Scholar]
  37. Marotte L. R., Mark R. P. The mechanism of selective reinnervation of fish eye muscle. II. Evidence from electronmicroscopy of nerve endings. Brain Res. 1970 Apr 1;19(1):53–62. doi: 10.1016/0006-8993(70)90236-2. [DOI] [PubMed] [Google Scholar]
  38. Matthews M. R. An ultrastructural study of axonal changes following constriction of postganglionic branches of the superior cervical ganglion in the rat. Philos Trans R Soc Lond B Biol Sci. 1973;264(866):479–505. doi: 10.1098/rstb.1973.0002. [DOI] [PubMed] [Google Scholar]
  39. Matthews M. R. Evidence from degeneration experiments for the preganglionic origin of afferent fibres to the small granule-containing cells of the rat superior cervical ganglion. J Physiol. 1971 Oct;218 (Suppl):95P–96P. [PubMed] [Google Scholar]
  40. Matthews M. R., Nash J. R. An efferent synapse from a small granule-containing cell to a principal neurone in the superior cervical ganglion. J Physiol. 1970 Sep;210(1):11P–14P. [PubMed] [Google Scholar]
  41. Matthews M. R., Ostberg A. Effects of preganglionic nerve section upon the afferent innervation of the small granule-containing cells in the rat superior cervical ganglion. Acta Physiol Pol. 1973 Jan-Feb;24(1):215–223. [PubMed] [Google Scholar]
  42. Matthews M. R., Raisman G. A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat. Proc R Soc Lond B Biol Sci. 1972 Apr 18;181(1062):43–79. doi: 10.1098/rspb.1972.0040. [DOI] [PubMed] [Google Scholar]
  43. McINTYRE A. K., BRADLEY K., BROCK L. G. Responses of motoneurons undergoing chromatolysis. J Gen Physiol. 1959 May 20;42(5):931–958. doi: 10.1085/jgp.42.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Molinoff P. B., Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem. 1971;40:465–500. doi: 10.1146/annurev.bi.40.070171.002341. [DOI] [PubMed] [Google Scholar]
  45. Niijima A. Experimental studies on the afferent innervation of the toad's heart. Jpn J Physiol. 1970 Oct 15;20(5):527–539. doi: 10.2170/jjphysiol.20.527. [DOI] [PubMed] [Google Scholar]
  46. Niijima A. The effect of efferent discharges in renal nerves on the activity of arterial mechanoreceptors in the kidney in rabbit. J Physiol. 1972 Apr;222(2):335–343. doi: 10.1113/jphysiol.1972.sp009800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nijima A. Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J Physiol. 1971 Dec;219(2):477–485. doi: 10.1113/jphysiol.1971.sp009673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Perri V., Sacchi O., Caella C. Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflugers Arch. 1970;314(1):40–54. doi: 10.1007/BF00587045. [DOI] [PubMed] [Google Scholar]
  49. Pfenninger K. H. The cytochemistry of synaptic densities. II. Proteinaceous components and mechanism of synaptic connectivity. J Ultrastruct Res. 1971 Jun;35(5):451–475. doi: 10.1016/s0022-5320(71)80005-9. [DOI] [PubMed] [Google Scholar]
  50. Price D. L. The response of amphibian glial cells to axonal transection. J Neuropathol Exp Neurol. 1972 Apr;31(2):267–277. doi: 10.1097/00005072-197204000-00004. [DOI] [PubMed] [Google Scholar]
  51. Proceedings of the anatomical society of great britain and ireland. J Anat. 1966 Jul;100(Pt 3):683–706. [PMC free article] [PubMed] [Google Scholar]
  52. Raisman G., Field P. M. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 1973 Feb 28;50(2):241–264. doi: 10.1016/0006-8993(73)90729-4. [DOI] [PubMed] [Google Scholar]
  53. Rouiller C., Nicolescu P., Orci L., Rufener C. The effect of anoxia on the ultrastructure of the superior cervical ganglion of the rat in vitro. Virchows Arch B Cell Pathol. 1971;7(4):269–292. doi: 10.1007/BF02892098. [DOI] [PubMed] [Google Scholar]
  54. Sotelo C. Permanence of postsynaptic specializations in the frog sympathetic ganglion cells after denervation. Exp Brain Res. 1968;6(4):294–305. doi: 10.1007/BF00233181. [DOI] [PubMed] [Google Scholar]
  55. Streit P., Akert K., Sandri C., Livingston R. B., Moor H. Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats. Anesthetized and unanesthetized preparations compared. Brain Res. 1972 Dec 24;48:11–26. doi: 10.1016/0006-8993(72)90168-0. [DOI] [PubMed] [Google Scholar]
  56. Sumner B. E., Sutherland F. I. Quantitative electron microscopy on the injured hypoglossal nucleus in the rat. J Neurocytol. 1973 Sep;2(3):315–328. doi: 10.1007/BF01104033. [DOI] [PubMed] [Google Scholar]
  57. Sumner B. E., Watson W. E. Retraction and expansion of the dendritic tree of motor neurones of adult rats induced in vivo. Nature. 1971 Sep 24;233(5317):273–275. doi: 10.1038/233273a0. [DOI] [PubMed] [Google Scholar]
  58. TAXI J. ETUDE DE CERTAINES SYNAPSES INTERNEURONALES DU SYST'EME NERVEUX AUTONOME. Acta Neuroveg (Wien) 1964 Jan 27;26:360–372. doi: 10.1007/BF01234602. [DOI] [PubMed] [Google Scholar]
  59. TAXI J. [Study of the ultrastkucture of the synaptic zones in the sympathetic ganglia of the frog]. C R Hebd Seances Acad Sci. 1961 Jan 4;252:174–176. [PubMed] [Google Scholar]
  60. Taxi J., Gautron J., L'Hermite P. Données ultrastructurales sur une éventuelle modulation adrénergique de l'activité du ganglion cervical supérieur du rat. C R Acad Sci Hebd Seances Acad Sci D. 1969 Oct;269(14):1281–1284. [PubMed] [Google Scholar]
  61. Thoenen H. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurones by cold-exposure of rats. Nature. 1970 Nov 28;228(5274):861–862. doi: 10.1038/228861a0. [DOI] [PubMed] [Google Scholar]
  62. Torvik A., Heding A. Effect of actinomycin D on retrograde nerve cell reaction. Further observations. Acta Neuropathol. 1969 Sep 9;14(1):62–71. doi: 10.1007/BF00687703. [DOI] [PubMed] [Google Scholar]
  63. Torvik A., Skjörten F. Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. I. Changes in the nerve cell cytoplasm. Acta Neuropathol. 1971;17(3):248–264. doi: 10.1007/BF00685058. [DOI] [PubMed] [Google Scholar]
  64. Torvik A., Skjörten F. Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. II. Changes in the glial cells. Acta Neuropathol. 1971;17(3):265–282. doi: 10.1007/BF00685059. [DOI] [PubMed] [Google Scholar]
  65. Tuckett I. L. On the Structure and Degeneration of Non-Medullated Nerve Fibres. J Physiol. 1896 May 5;19(4):i1–311. [PMC free article] [PubMed] [Google Scholar]
  66. Uchida Y., Kamisaka K., Ueda H. Two types of renal mechanoreceptors. Jpn Heart J. 1971 May;12(3):233–241. doi: 10.1536/ihj.12.233. [DOI] [PubMed] [Google Scholar]
  67. Ueda H., Uchida Y., Kamisaka K. Mechanism of the reflex depressor effect by the kidney in dog. Jpn Heart J. 1967 Nov;8(6):597–606. doi: 10.1536/ihj.8.597. [DOI] [PubMed] [Google Scholar]
  68. Watson W. E. Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J Physiol. 1968 Jun;196(3):655–676. doi: 10.1113/jphysiol.1968.sp008528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Watson W. E. Some quantitative observations upon the responses of neuroglial cells which follow axotomy of adjacent neurones. J Physiol. 1972 Sep;225(2):415–435. doi: 10.1113/jphysiol.1972.sp009947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Westrum L. E., Black R. G. Fine structural aspects of the synaptic organization of the spinal trigeminal nucleus (pars interpolaris) of the cat. Brain Res. 1971 Jan 22;25(2):265–287. doi: 10.1016/0006-8993(71)90438-0. [DOI] [PubMed] [Google Scholar]
  71. YAMAMOTO T. [METHOD OF STAINING WITH TOLUIDINE BLUE FOR EXPOXY RESIN-EMBEDDED TISSUES FOR LIGHT MICROSCOPY]. Kaibogaku Zasshi. 1963 Apr 1;38:124–128. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES