Abstract
1. The dimethyloxazolidinedione (DMO) technique was used to estimate intracellular pH (pHi) in bullfrog toe muscles incubated in vitro. The control value of pHi was 7·16 + ± 0·01 (S.D.).
2. pHi was affected by changes in PCO2 and external bicarbonate ion concentration ([HCO3-]0). At a given PCO2, decreasing the external [HCO3-] was more effective in lowering pHi than increasing the external [HCO3-] was in increasing pHi.
3. On the assumption that the changes in pHi were due to hydrogen ion [H+) movements across the membrane, a H+ flux of 10-13 mole/cm2. sec was calculated. The corresponding H+ permeability coefficient was 10-3 cm/sec.
4. The variability of the tissue CO2 buffer value was examined.
Full text
PDF![15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/6c43c47bdd37/jphysiol01349-0022.png)
![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/cf9d8398b804/jphysiol01349-0023.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/a868776e1a3a/jphysiol01349-0024.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/e6e5619179e8/jphysiol01349-0025.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/63d39487c74c/jphysiol01349-0026.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/f5ab503107a1/jphysiol01349-0027.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/486f9385d7bc/jphysiol01349-0028.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/1633f9b69b97/jphysiol01349-0029.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/1720c08a18f7/jphysiol01349-0030.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/9520f02c6567/jphysiol01349-0031.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/abeaef067345/jphysiol01349-0032.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/247388ca4595/jphysiol01349-0033.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/1331316/364fda5c43b6/jphysiol01349-0034.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bianchi C. P., Bolton T. C. Action of local anesthetics on coupling systems in muscle. J Pharmacol Exp Ther. 1967 Aug;157(2):388–405. [PubMed] [Google Scholar]
- Butler T. C., Poole D. T., Waddell W. J. Acid-labile carbon dioxide in muscle: its nature and relationship to intracellular pH. Proc Soc Exp Biol Med. 1967 Jul;125(3):972–974. doi: 10.3181/00379727-125-32252. [DOI] [PubMed] [Google Scholar]
- CALDWELL P. C. Studies on the internal pH of large muscle and nerve fibres. J Physiol. 1958 Jun 18;142(1):22–62. doi: 10.1113/jphysiol.1958.sp005998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter N. W., Rector F. C., Jr, Campion D. S., Seldin D. W. Measurement of intracellular pH with glass microelectrodes. Fed Proc. 1967 Sep;26(5):1322–1326. [PubMed] [Google Scholar]
- Chance B., Lee C. P., Mela L. Control and conservation of energy in the cytochrome chain. Fed Proc. 1967 Sep;26(5):1341–1354. [PubMed] [Google Scholar]
- Fletcher W. M. Lactic acid in amphibian muscle. J Physiol. 1907 Mar 27;35(4):247–309. doi: 10.1113/jphysiol.1907.sp001194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERBERG R. J. Phosphorescence in liquid scintillation counting of proteins. Science. 1958 Jul 25;128(3317):199–200. doi: 10.1126/science.128.3317.199. [DOI] [PubMed] [Google Scholar]
- HILL A. V. The influence of the external medium on the internal pH of muscle. Proc R Soc Lond B Biol Sci. 1955 Aug 16;144(914):1–22. doi: 10.1098/rspb.1955.0030. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IRVINE R. O., SAUNDERS S. J., MILNE M. D., CRAWFORD M. A. Gradients of potassium and hydrogen ion in potassiumdeficient voluntary muscle. Clin Sci. 1961 Feb;20:1–18. [PubMed] [Google Scholar]
- Novotný I. pH changes during splitting of ATP in skeletal and cardiac muscle extracts and microsomes. Physiol Bohemoslov. 1968;17(6):569–575. [PubMed] [Google Scholar]
- Paymaster N. J., Englesson S. Calculation of pH of human erythrocyte from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Acta Anaesthesiol Scand. 1966;10(4):219–224. doi: 10.1111/j.1399-6576.1966.tb00344.x. [DOI] [PubMed] [Google Scholar]
- Reeves R. B. Role of body temperature in determining the acid-base state in vertebrates. Fed Proc. 1969 May-Jun;28(3):1204–1208. [PubMed] [Google Scholar]
- Steinmetz P. R. Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2. J Clin Invest. 1969 Jul;48(7):1258–1265. doi: 10.1172/JCI106091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAUGHAN M., STEINBERG D., LOGAN J. Liquid scintillation counting of C14- and H3-labeled amino acids and proteins. Science. 1957 Sep 6;126(3271):446–447. doi: 10.1126/science.126.3271.446-a. [DOI] [PubMed] [Google Scholar]
- WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waddell W. J., Bates R. G. Intracellular pH. Physiol Rev. 1969 Apr;49(2):285–329. doi: 10.1152/physrev.1969.49.2.285. [DOI] [PubMed] [Google Scholar]
- Wastl H., Seliskar A. Observations on the combination of CO(2) in the blood of the bull frog (Rana catesbiana). J Physiol. 1925 Sep 4;60(4):264–268. doi: 10.1113/jphysiol.1925.sp002243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss G. B. Actions of procaine on nicotine-induced effects in frog sartorius muscle. J Pharmacol Exp Ther. 1968 Mar;160(1):148–158. [PubMed] [Google Scholar]
- Weiss G. B. Dependence of nicotine-C14 distribution and movements upon pH in frog sartorius muscle. J Pharmacol Exp Ther. 1968 Mar;160(1):135–147. [PubMed] [Google Scholar]
- Weiss G. B. The effect of pH on nicotine-induced contracture and Ca45 movements in frog sartorius muscle. J Pharmacol Exp Ther. 1966 Dec;154(3):605–612. [PubMed] [Google Scholar]