Abstract
1. It was shown that the potentials evoked by using a grating pattern alternated in phase at 8 Hz is proportional to the logarithm of the supra-threshold contrast. Other functions were considered, but they did not describe the data so parsimoniously.
2. The same logarithmic function described the results when a grating was simply flashed on and off; therefore, the apparent movement accompanying the phase alternations is not necessary to evoke the potential.
3. The contrast at which the evoked potential reached the theoretically zero voltage (C0) was compared with the psychophysical contrast threshold, determined by means of proportion-of-time seen measurements; the C0 contrast corresponded to 50% time seen.
4. The potential, corrected for the proportion-of-time seen, was found linearly related to contrast.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell F. W., Cleland B. G., Cooper G. F., Enroth-Cugell C. The angular selectivity of visual cortical cells to moving gratings. J Physiol. 1968 Sep;198(1):237–250. doi: 10.1113/jphysiol.1968.sp008604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Cooper G. F., Enroth-Cugell C. The spatial selectivity of the visual cells of the cat. J Physiol. 1969 Jul;203(1):223–235. doi: 10.1113/jphysiol.1969.sp008861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Kulikowski J. J. An electrophysiological measure of the psychophysical contrast threshold. J Physiol. 1971;217 (Suppl):54P–55P. [PubMed] [Google Scholar]
- Campbell F. W., Kulikowski J. J. Orientational selectivity of the human visual system. J Physiol. 1966 Nov;187(2):437–445. doi: 10.1113/jphysiol.1966.sp008101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol. 1970 May;207(3):635–652. doi: 10.1113/jphysiol.1970.sp009085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959 Oct;148:574–591. doi: 10.1113/jphysiol.1959.sp006308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulikowski J. J. Some stimulus parameters affecting spatial and temporal resolution of human vision. Vision Res. 1971 Jan;11(1):83–93. doi: 10.1016/0042-6989(71)90206-9. [DOI] [PubMed] [Google Scholar]
- Maffei L., Campbell F. W. Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science. 1970 Jan 23;167(3917):386–387. doi: 10.1126/science.167.3917.386. [DOI] [PubMed] [Google Scholar]
- Matthews B. H. The response of a single end organ. J Physiol. 1931 Jan 21;71(1):64–110. doi: 10.1113/jphysiol.1931.sp002718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosner B. S., Goff W. R. Electrical responses of the nervous system and subjective scales of intensity. Contrib Sens Physiol. 1967;2:169–221. doi: 10.1016/b978-1-4831-6749-7.50010-6. [DOI] [PubMed] [Google Scholar]