Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1972 Jun;223(2):549–570. doi: 10.1113/jphysiol.1972.sp009862

Post-stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone

M S Brodwick, D Junge
PMCID: PMC1331462  PMID: 5039286

Abstract

1. Intracellular records from Aplysia giant (R2) cell somata showed long lasting 4-10 mV hyperpolarizations after passage of outward current through a second intracellular electrode.

2. An increase in membrane slope conductance occurred simultaneously with the post-stimulus hyperpolarization (PSH).

3. Both the PSH and conductance-increase varied strongly with stimulus amplitude and duration.

4. Both the PSH and the conductance increase occurred in Ca-free medium containing tetrodotoxin, when action-potential production was completely blocked.

5. The PSH persisted in the presence of ouabain or DNP, with cooling, with removal of external K+, and in media where all the Na+ was replaced with Li+, suggesting that it was not due to the activity of an electrogenic pump.

6. A reversal potential for the PSH was demonstrated by application of maintained inward current following the end of an outward-directed stimulus.

7. The PSH reversal potential varied with [K]o, but not with [Cl]o or [Na]o, suggesting that the PSH was mainly due to an increase in K conductance.

8. The PSH and the conductance increase were reduced strongly when all the Na+ was replaced with Tris, and only slightly when Na+ was replaced with sucrose.

Full text

PDF
554

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. Slow changes in potassium permeability in skeletal muscle. J Physiol. 1970 Jul;208(3):645–668. doi: 10.1113/jphysiol.1970.sp009140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albuquerque E. X., Grampp W. Effects of tetrodotoxin on the slowly adapting stretch receptor neurone of lobster. J Physiol. 1968 Mar;195(1):141–156. doi: 10.1113/jphysiol.1968.sp008452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylor D. A., Nicholls J. G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):571–589. doi: 10.1113/jphysiol.1969.sp008880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. M., Sutton R. B., Walker J. L., Jr Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J Gen Physiol. 1970 Nov;56(5):559–582. doi: 10.1085/jgp.56.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter D. O., Alving B. O. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol. 1968 Jul;52(1):1–21. doi: 10.1085/jgp.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connor J. A., Stevens C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971 Feb;213(1):31–53. doi: 10.1113/jphysiol.1971.sp009366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B. Potassium permeability in myelinated nerve fibres of Xenopus laevis. J Physiol. 1962 Jan;160:54–61. doi: 10.1113/jphysiol.1962.sp006834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gage P. W., Hubbard J. I. The origin of the post-tetanic hyperpolarization of mammalian motor nerve terminals. J Physiol. 1966 May;184(2):335–352. doi: 10.1113/jphysiol.1966.sp007918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents. J Physiol. 1970 Nov;211(1):217–244. doi: 10.1113/jphysiol.1970.sp009276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geduldig D., Junge D. Sodium and calcium components of action potentials in the Aplysia giant neurone. J Physiol. 1968 Dec;199(2):347–365. doi: 10.1113/jphysiol.1968.sp008657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  15. HOLMES O. Effects of pH, changes in potassium concentration and metabolic inhibitors on the after-potentials of mammalian non-medullated nerve fibres. Arch Int Physiol Biochim. 1962 Mar;70:211–245. doi: 10.3109/13813456209092855. [DOI] [PubMed] [Google Scholar]
  16. Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KERKUT G. A., THOMAS R. C. AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS. Comp Biochem Physiol. 1965 Jan;14:167–183. doi: 10.1016/0010-406x(65)90017-4. [DOI] [PubMed] [Google Scholar]
  18. Ko K. C., Gimeno A. L., Berman D. A. Effects of buffers on developed tension, membrane potentials, and ATP levels of atria. Am J Physiol. 1969 Apr;216(4):853–859. doi: 10.1152/ajplegacy.1969.216.4.853. [DOI] [PubMed] [Google Scholar]
  19. Koike H., Brown H. M., Hagiwara S. Hyperpolarization of a barnacle photoreceptor membrane following illumination. J Gen Physiol. 1971 Jun;57(6):723–737. doi: 10.1085/jgp.57.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuno M., Miyahara J. T., Weakly J. N. Post-tetanic hyperpolarization produced by an electrogenic pump in dorsal spinocerebellar tract neurones of the cat. J Physiol. 1970 Nov;210(4):839–855. doi: 10.1113/jphysiol.1970.sp009245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lorenzo Marchiafava P. The effect of temperature change on membrane potential and conductance in Aplysia giant nerve cell. Comp Biochem Physiol. 1970 Jun 15;34(4):847–852. doi: 10.1016/0010-406x(70)91007-8. [DOI] [PubMed] [Google Scholar]
  22. McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NARAHASHI T., YAMASAKI T. Mechanism of the after-potential production in the giant axons of the cockroach. J Physiol. 1960 Apr;151:75–88. [PMC free article] [PubMed] [Google Scholar]
  24. Nakajima S., Kusano K. Behavior of delayed current under voltage clamp in the supramedullary neurons of puffer. J Gen Physiol. 1966 Mar;49(4):613–628. doi: 10.1085/jgp.49.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakajima S., Takahashi K. Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J Physiol. 1966 Nov;187(1):105–127. doi: 10.1113/jphysiol.1966.sp008078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RITCHIE J. M., STRAUB R. W. The hyperpolarization which follows activity in mammalian non-medullated fibres. J Physiol. 1957 Apr 3;136(1):80–97. doi: 10.1113/jphysiol.1957.sp005744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rang H. P., Ritchie J. M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol. 1968 May;196(1):183–221. doi: 10.1113/jphysiol.1968.sp008502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SHANES A. M. Potassium movement in relation to nerve activity. J Gen Physiol. 1951 Jul;34(6):795–807. doi: 10.1085/jgp.34.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato M., Austin G., Yai H., Maruhashi J. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells. J Gen Physiol. 1968 Mar;51(3):321–345. doi: 10.1085/jgp.51.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sokolove P. G., Cooke I. M. Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J Gen Physiol. 1971 Feb;57(2):125–163. doi: 10.1085/jgp.57.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TAUC L., KANDEL E. R. AN ANOMALOUS FORM OF RECTIFICATION IN A MOLLUSCAN CENTRAL NEURONE. Nature. 1964 Jun 27;202:1339–1341. doi: 10.1038/2021339a0. [DOI] [PubMed] [Google Scholar]
  32. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. den Hertog A., Ritchie J. M. A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic componen of the sodium pump in mammalian non-myelinated nerve fibres. J Physiol. 1969 Oct;204(3):523–538. doi: 10.1113/jphysiol.1969.sp008929. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES