Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 May;14(5):335–342. doi: 10.1016/S0006-3495(74)85920-5

Coexistence of Rigid Crystalline and Liquid Crystalline Phases in Lecithin-Water Mixtures

Melvin H Gottlieb, E D Eanes
PMCID: PMC1334544  PMID: 4836034

Abstract

X-ray diffraction measurements show that the β′-crystalline to liquid crystalline transitions of dipalmitoyl lecithin-water mixtures take place over temperature ranges of several degrees, and by the gradual disappearance of one crystalline state accompanied by the gradual appearance of the other. The narrowness of the low angle X-ray lines indicates that the two crystalline states exist in separate phases. At a given temperature, the liquid crystalline phase has the greater water content. The bilayers of the liquid crystalline phase are thinner than those of the β′-crystalline phase while the distances between bilayers are essentially equal in the two phases.

Full text

PDF
338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Engelman D. M. The molecular structure of the membrane of Acholeplasma laidlawii. Chem Phys Lipids. 1972 May;8(4):298–302. doi: 10.1016/0009-3084(72)90058-8. [DOI] [PubMed] [Google Scholar]
  2. Engelman D. M. X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii. J Mol Biol. 1970 Jan 14;47(1):115–117. doi: 10.1016/0022-2836(70)90407-9. [DOI] [PubMed] [Google Scholar]
  3. Esfahani M., Limbrick A. R., Knutton S., Oka T., Wakil S. J. The molecular organization of lipids in the membrane of Escherichia coli: phase transitions. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3180–3184. doi: 10.1073/pnas.68.12.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gottlieb M. H., Eanes E. D. Influence of electrolytes on the thicknesses of the phospholipid bilayers of lamellar lecithin mesophases. Biophys J. 1972 Nov;12(11):1533–1548. doi: 10.1016/s0006-3495(72)86180-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinz H. J., Sturtevant J. M. Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L- -lecithins in aqueous suspension. J Biol Chem. 1972 Jun 10;247(11):3697–3700. [PubMed] [Google Scholar]
  6. Ladbrooke B. D., Chapman D. Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids. 1969 Dec;3(4):304–356. doi: 10.1016/0009-3084(69)90040-1. [DOI] [PubMed] [Google Scholar]
  7. Levine Y. K., Wilkins M. H. Structure of oriented lipid bilayers. Nat New Biol. 1971 Mar 17;230(11):69–72. doi: 10.1038/newbio230069a0. [DOI] [PubMed] [Google Scholar]
  8. Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
  9. Steim J. M., Tourtellotte M. E., Reinert J. C., McElhaney R. N., Rader R. L. Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc Natl Acad Sci U S A. 1969 May;63(1):104–109. doi: 10.1073/pnas.63.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES