Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1974 May;14(5):387–411. doi: 10.1016/S0006-3495(74)85923-0

Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos

R A DiCaprio, A S French, E J Sanders
PMCID: PMC1334547  PMID: 19431351

Abstract

Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage.

Full text

PDF
389

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. V., Spira M. E., Pappas G. D. Properties of electrotonic junctions between embryonic cells of Fundulus. Dev Biol. 1972 Dec;29(4):419–435. doi: 10.1016/0012-1606(72)90082-6. [DOI] [PubMed] [Google Scholar]
  2. HAGIWARA S., MORITA H. Electrotonic transmission between two nerve cells in leech ganglion. J Neurophysiol. 1962 Nov;25:721–731. doi: 10.1152/jn.1962.25.6.721. [DOI] [PubMed] [Google Scholar]
  3. Ito S., Hori N. Electrical characteristics of Triturus egg cells during cleavage. J Gen Physiol. 1966 May;49(5):1019–1027. doi: 10.1085/jgp.49.5.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ito S., Loewenstein W. R. Ionic communication between early embryonic cells. Dev Biol. 1969 Mar;19(3):228–243. doi: 10.1016/0012-1606(69)90062-1. [DOI] [PubMed] [Google Scholar]
  5. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Palmer J. F., Slack C. Some bio-electric parameters of early Xenopus embryos. J Embryol Exp Morphol. 1970 Nov;24(3):535–553. [PubMed] [Google Scholar]
  7. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  8. Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SALTHE S. N. THE EGG CAPSULES IN THE AMPHIBIA. J Morphol. 1963 Sep;113:161–171. doi: 10.1002/jmor.1051130204. [DOI] [PubMed] [Google Scholar]
  10. Sheridan J. D. Dye movement and low-resistance junctions between reaggregated embryonic cells. Dev Biol. 1971 Dec;26(4):627–636. doi: 10.1016/0012-1606(71)90145-x. [DOI] [PubMed] [Google Scholar]
  11. Sheridan J. D. Electrophysiological evidence for low-resistance intercellular junctions in the early chick embryo. J Cell Biol. 1968 Jun;37(3):650–659. doi: 10.1083/jcb.37.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Slack C., Palmer J. F. The permeability of intercellular junctions in the early embryo of Xenopus laevis, studied with a fluorescent tracer. Exp Cell Res. 1969 Jun;55(3):416–419. doi: 10.1016/0014-4827(69)90577-1. [DOI] [PubMed] [Google Scholar]
  13. Slack C., Palmer J. F. The permeability of intercellular junctions in the early embryo of Xenopus laevis, studied with a fluorescent tracer. Exp Cell Res. 1969 Jun;55(3):416–419. doi: 10.1016/0014-4827(69)90577-1. [DOI] [PubMed] [Google Scholar]
  14. Tupper J., Saunders J. W., Jr, Edwards C. The onset of electrical communication between cells in the developing starfish embryo. J Cell Biol. 1970 Jul;46(1):187–191. doi: 10.1083/jcb.46.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Laat S. W., Luchtel D., Bluemink J. G. The action of cytochalasin B during egg cleavage in Xenopus laevis: dependence on cell membrane permeability. Dev Biol. 1973 Mar;31(1):163–177. doi: 10.1016/0012-1606(73)90327-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES