Abstract
By means of glutaraldehyde fixation, human erythrocytes are "frozen" while suspended in turbulent shear flow. As the shearing is increased in steps from 100 to 2,500 dyn/cm2, the deformed cells evolve gradually toward a smooth ellipsoidal shape. At stresses above 2,500 dyn/cm2, approximately, fragmentation of the cells occurs with a concomitant increase in free hemoglobin content of the suspending medium. The photographic evidence suggests that the cells rupture in tension in the bulk flow.
Full text
PDF![1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/92e68d9ff62a/biophysj00322-0011.png)
![2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/5b39b336616d/biophysj00322-0012.png)
![3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/685f07e8212d/biophysj00322-0013.png)
![4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/4d64a935cfe9/biophysj00322-0014.png)
![5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/ec87e87f6a22/biophysj00322-0015.png)
![6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/664d41e0a319/biophysj00322-0016.png)
![7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/3b24c6dc61f8/biophysj00322-0017.png)
![8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/dcb2ee57c808/biophysj00322-0018.png)
![9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/6492b13e4f04/biophysj00322-0019.png)
![10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbf/1334606/a06a710d5262/biophysj00322-0020.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernstein E. F., Blackshear P. L., Jr, Keller K. H. Factors influencing erythrocyte destruction in artificial organs. Am J Surg. 1967 Jul;114(1):126–138. doi: 10.1016/0002-9610(67)90047-5. [DOI] [PubMed] [Google Scholar]
- Indeglia R. A., Shea M. A., Forstrom R., Bernstein E. F. Influence of mechanical factors on erythrocyte sublethal damage. Trans Am Soc Artif Intern Organs. 1968;14:264–272. [PubMed] [Google Scholar]
- Leverett L. B., Hellums J. D., Alfrey C. P., Lynch E. C. Red blood cell damage by shear stress. Biophys J. 1972 Mar;12(3):257–273. doi: 10.1016/S0006-3495(72)86085-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid-Schöenbein H., Wells R. Fluid drop-like transition of erythrocytes under shear. Science. 1969 Jul 18;165(3890):288–291. doi: 10.1126/science.165.3890.288. [DOI] [PubMed] [Google Scholar]
- Sutera S. P., Croce P. A., Mehrjardi M. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans Am Soc Artif Intern Organs. 1972;18(0):335-41, 347. doi: 10.1097/00002480-197201000-00084. [DOI] [PubMed] [Google Scholar]
- Williams A. R., Hughes D. E., Nyborg W. L. Hemolysis near a transversely oscillating wire. Science. 1970 Aug 28;169(3948):871–873. doi: 10.1126/science.169.3948.871. [DOI] [PubMed] [Google Scholar]
- Williams A. R. Shear-induced fragmentation of human erythrocytes. Biorheology. 1973 Sep;10(3):303–311. doi: 10.3233/bir-1973-10303. [DOI] [PubMed] [Google Scholar]